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Service Management

§ Service Management Workflow
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Figure 3: A Typical Workflow of Service Management
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System Overview

§ System Architecture 

Figure 4: Cognitive Event Automation System Architecture
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Challenges with monitoring data

§ Data produced by different monitors (and systems) is highly variable

§ New monitors are continuously added

Figure 2: Two different monitoring tickets and the same matching automation.
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State of the art for automated resolution of the events

§ Automated system mostly employ regular expressions which are used as matchers to 
specific automation

§ As monitors changed and added the number of ‘matchers’ is growing.
– IBM Global services have around 25,000 regular expressions within 4 years
– Maintaining matchers become difficult or impossible task 

§ Artificial intelligence techniques are introduced to choose the ‘correct’ automation for a 
monitoring ticket with the following challenge:

– Feature selection
– Deep learning models

How does the matcher service effectively achieve and maintain high accuracy on noisy tickets 
while automatically adapting to an introduction of a new or changed ticket contents?
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Problem Definition & Methodology
§ What is the best methodology for solving this challenge

Figure 5: Using modeling for the multiclass text classification: classical AI vs deep learning vs combination. 
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Classical AI models

§ Classical AI Models:
– Classical AI models usually work with relatively low-dimension attribute spaces, 

necessitating well-defined and highly informative attributes as coordinates of feature 
vectors. 

– We use domain experts’ assistance to determine such attributes for the ticket dataset 
– Example: Support Vector Machines:

• an efficient, theoretically solid and strong baseline for text classification problem

– Ensemble Methods
• Train multiple classifiers and apply voting to make final predictions.
• More accurate than a single classifier
• Bagging and Boosting

• Example: Random Forests
(1) a highly accurate and robust machine learning algorithm.
(2) capable of modeling large feature spaces
(3) an ensemble of decision trees 
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Ensemble methods
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• This methods require considerable effort on text preprocessing and feature extraction
• Due to the nature of continuously-changing ticket records automatic feature extractors or 

selectors are absolutely critical
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Deep Learning Methods
§ Deep Learning: Convolutional Neural Networks

– have been shown to be effective in many Computer Vision and NLP tasks.

§ Convolution is the first layer to extract features from an input

§ ReLU stands for Rectified Linear Unit for a non-linear operation. The output is ƒ(x) = max(0,x). Why ReLU
is important : ReLU’s purpose is to introduce non-linearity

§ Pooling layers section would reduce the number of parameters 

§ Fully Connected layer, we flattened our matrix into vector and feed it into a fully connected layer like 
neural network

§ In our case the layers are 
• word embedding layer, 
• fully connected layer and 
• dropout layer

– The introduction of a dropout layer is a regularization technique that reduces overfitting.
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Combination Models

§ Combination Model
– CNNs is used for learning feature representation: 

• convolution feature filters with varying widths captures several different semantic 
classes of ngrams by using different activation patterns

• global maxpooling function induces behavior which separates important ngrams from 
the rest
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Data sets
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– Experimental incident data is generated by a variety of monitoring systems and 
stored in the Operational Data Lake. 

– It contains |D| = 100, 000 tickets from Jan. 2019 to Apr. 2019. 
– There are 114 automations (i.e., 114 classes/labels) in the dataset and a 

vocabulary V of size |V | = 184, 936
– All incidents used in experiments are automatically resolved

– After some preliminary testing, we designed our primary experiments to 
– Randomly initialize all word vectors with a dimension of 300
– use ReLU, filter size of 4 × 5 with 64 feature maps each (for CNN only), 

dropout rate of 0.25, mini-batch size of 128, and epoch number of 20. 
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Results 

§ The accuracy (ACC) and F1-score (F1) are widely applied metrics for evaluating multiclass 
classifiers. 
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Conclusion

§ Classical AI models perform well when the data size is small; they require handcrafted 
features

§ Deep learning models achieve a better performance when the training data is large enough 

§ Combination models have the best performance on all dataset sizes and do not require 
engineered features
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Back up
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