
© 2009 IBM Corporation

Detecting Causal Structure on Cloud
Application Microservices Using Granger
Causality Models

Qing Wang1, Laura Shwartz1, Genady Ya. Grabarnik2, Vijay Arya3, Karthikeyan
Shanmugam4

1.IBM Research, IBM T.J. Watson Research Center, Yorktown Heights, NY, US
2.Dept. Math & Computer Science, St. John's University, Queens, NY, US
3.IBM Research India, Bangalore, KA, IN
4.IBM Research AI, IBM T.J. Watson Research Center, Yorktown Heights, NY, US

© 2009 IBM Corporation2

Agenda

§ Introduction

§ Problem Statement & Challenges

§ Related Work

§ Problem Modeling & AI Methodologies

§ Experiments

§ Conclusion & Future Work

© 2009 IBM Corporation3

Introduction

§ Since digital transformation have accelerated across the globe in nearly every industry, AI
for IT Operations (AIOps) has become a critical capability for any enterprise that aims to
use rapidly growing IT data to assist its IT operations in providing reliability for its
applications.

§ What is AIOps: use IT data with AI models to resolve/predict IT incidents (i.e., problems)
from applications.

– e.g., IT data including logs, metrics, alerts, topologies and tickets.
– e.g., IT incidents including various outages, anomalies, and unplanned downtime.
– e.g., AI models including event correlation models, predictive models, anomaly

detection models, etc.

§ Why AIOps:
– It can greatly help Site Reliability Engineers (SREs) 1) detect incidents early, 2)

determine the root cause of incidents, and 3) recommend timely actions for solving
them.

– This, in turn, saves millions of dollars for enterprises and keep their customers
satisfied. [1]

[1] https://www.ibm.com/cloud/blog/watson-aiops-bringing-ai-to-it-operations-management

© 2009 IBM Corporation4

Problem Statement & Challenges

§ In practice
– The loosely-coupled microservices architecture has become popular.

– Industrial microservice-based applications always have hundreds to thousands of
microservices and complex dependency relationships among them. [2]

– Many microservice-based applications suffer from limited observability, i.e., the complex
topology of microservices is often unknown but fixed.

– Localizing faults is extremely challenging in these microservice-based applications but
desirable as it allows SREs to quickly find the faulty microservices.

[2] An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems

Microservice
A

Microservice
B

Microservice
C

depends on

depends on

…

© 2009 IBM Corporation5

Problem Statement & Challenges

§ We propose a framework:
– Learn the hidden causal graph among microservices utilizing fault injections to observe

the error propagations from only logs collected by LogDNA.

Microservice
A

Microservice
B

Microservice
C

…

Table 1. An example of logs data from 1) At time t, inject a
fault to B; 2) After 5s, we observe an error from A.

Observed Logs
_time _line … _level _app _container

t http 500 … error B B

… info

(t+1) http 500 … error A A

error propagation

not observable
observable

© 2009 IBM Corporation6

Related Work

§ AIOps (AI for IT Operations) has been extensively studied for many years, in order to help IT
operations teams determine, diagnosis incidents (including root causa analysis), and finally
recommend the next best actions to resolve the incidents. [3, 29, 33, 34, 36, 37]

§ Mining temporal dependency structure among microservices is one of the critical tasks for
incident diagnosis in AIOps.

– [12] uses causal inference techniques to build a dependency graph for anomaly
detection.

– [19] models causal dependencies on metrics data to facilitate fault localization in the
cloud system.

§ It is still in its infancy using only log data to uncover the hidden causal relationships between
microservices of a microservice-based application.

§ Our work focus on the performance analysis of linear and nonlinear Granger causality
models for detecting causal relationships.

© 2009 IBM Corporation7

System Overview

Logs Binning
t
t+1
…

Causal Modeling
1. Linear Granger

Causality models
2. Nonlinear Granger

Causality models

B ----->g A
B ----->g C

…

Fault Injection

Log Modeling

© 2009 IBM Corporation8

Problem Modeling & AI Methodologies

§ Log Modeling

– Log Data Collection: Inject a fault into one
microservice of a subset of microservices of
TrainTicket and collect the normal or erroneous
logs from affected microservices by the faulty
microservice.

– Log Labeling:
• Error patterns, e.g., “HTTP 500 Internal

Server Error”

– Binning logs as time series:
• Use different time bin sizes (10ms, 100ms,

1s) and count the number of error logs from
each microservice in each bin.

© 2009 IBM Corporation9

Problem Modeling & AI Methodologies

§ Causal Modeling
– In practice, Granger causality is more straightforward

and robust for learning causal relationships among
multivariate time series.

– Linear Granger Causality Modeling: Vector Auto-
Regression (VAR) models.

• BLR and BLasso

– Nonlinear Granger Causality Modeling: use the
nonlinear autoregressive function 𝑓(#) for Granger
causality problem in time series analysis.

• cMLP and cLSTM

© 2009 IBM Corporation10

Experiments

§ Data:
– Synthetic data

• Linear VAR data: the time series data are generated with linear VAR model.
• Lorenz-96 data: the time series data are generated with nonlinear Lorenz-96 model [13].
• Evaluation Metric: AUROC score. [16]

– Benchmark data
• TrainTicket log data: collect log data by deleting the microservice ‘ts-basic-service’ from the

system.
• Evaluation Metrics: Precision, Recall, F1.

§ Models:
– Linear Granger Causality models

• BLR(𝑞!): 𝑞! is for the regularization term.
• Blasso(𝜆): 𝜆 is for the regularization term.
• MMPC(ParCorr): MMPC with partial correlation Conditional Independence testing

– Nonlinear Granger Causality models
• cMLP: with a single multilayer perceptron layer.
• cLSTM: with LSTM architecture.
• MMPC(RCoT): MMPC with RCoT Conditional Independence testing

© 2009 IBM Corporation11

Results on Synthetic Data

K is the number of time series.
T is the number of samples.
F is used to determine the nonlinear level and chaos in the time series.

© 2009 IBM Corporation

Results on TrainTicket Data

12

1) We delete the microservice ‘ts-basic-service’ from the system which results in the other
four microservice emitting error logs.

2) 226 error logs are emitted.

© 2009 IBM Corporation

Results on TrainTicket Data

13

§ In this experiment,
– All the models’ results shown in the table with

their optimal parameter setting.
– Linear Granger models performs better on this

dataset from the results.

§ Findings:
– If K (the number of time series) is small, cMLP

is the best candidate since it performs well on
both linear and nonlinear Granger causality
models even with a small T.

– cLSTM model works better to capture more
complicated nonlinear dependencies.

– BLR and Blasso have good performance on
linear time series data when T is large enough.

© 2009 IBM Corporation

Conclusion & Future Work

§ Conclusion
– Hundreds to thousands of microservice and complex dependency relationships among

them makes root casual analysis extremely challenging.
– These dependency information is often unknown.
– We develop a system using only log data to learn the dependency graph among

microservices and carefully study the performance of linear and nonlinear Granger
causality models on learning causal relationships.

§ Future Work
– We will extend our analysis on a large dataset involving multiple faults and

microservices.
– We also want to develop new deep causal models for causal learning, which can directly

take the raw log data as inputs.

14

© 2009 IBM Corporation

Thanks

15

