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Introduction

§ Since digital transformation have accelerated across the globe in nearly every industry, AI 
for IT Operations (AIOps) has become a critical capability for any enterprise that aims to 
use rapidly growing IT data to assist its IT operations in providing reliability for its 
applications. 

§ What is AIOps: use IT data with AI models to resolve/predict IT incidents (i.e., problems) 
from applications. 

– e.g., IT data including logs, metrics, alerts, topologies and tickets. 
– e.g., IT incidents including various outages, anomalies, and unplanned downtime.
– e.g., AI models including event correlation models, predictive models, anomaly 

detection models, etc.

§ Why AIOps:
– It can greatly help Site Reliability Engineers (SREs) 1) detect incidents early, 2) 

determine the root cause of incidents, and 3) recommend timely actions for solving 
them. 

– This, in turn, saves millions of dollars for enterprises and keep their customers 
satisfied. [1]

[1] https://www.ibm.com/cloud/blog/watson-aiops-bringing-ai-to-it-operations-management
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Problem Statement & Challenges

§ In practice 
– The loosely-coupled microservices architecture has become popular.  

– Industrial microservice-based applications always have hundreds to thousands of 
microservices and complex dependency relationships among them. [2]

– Many microservice-based applications suffer from limited observability, i.e., the complex 
topology of microservices is often unknown but fixed.  

– Localizing faults is extremely challenging in these microservice-based applications but 
desirable as it allows SREs to quickly find the faulty microservices. 

[2] An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems
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Problem Statement & Challenges

§ We propose a framework:
– Learn the hidden causal graph among microservices utilizing fault injections to observe 

the error propagations from only logs collected by LogDNA.  

Microservice 
A

Microservice 
B

Microservice 
C

…

Table 1. An example of logs data from 1) At time t, inject a 
fault to B; 2) After 5s, we observe an error from A. 

Observed Logs
_time _line … _level _app _container

t http 500 … error B B

… info

(t+1) http 500 … error A A

error propagation

not observable
observable
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Related Work

§ AIOps (AI for IT Operations) has been extensively studied for many years, in order to help IT 
operations teams determine, diagnosis incidents (including root causa analysis), and finally 
recommend the next best actions to resolve the incidents. [3, 29, 33, 34, 36, 37]

§ Mining temporal dependency structure among microservices is one of the critical tasks for 
incident diagnosis in AIOps.

– [12] uses causal inference techniques to build a dependency graph for anomaly 
detection. 

– [19] models causal dependencies on metrics data to facilitate fault localization in the 
cloud system. 

§ It is still in its infancy using only log data to uncover the hidden causal relationships between 
microservices of a microservice-based application.  

§ Our work focus on the performance analysis of linear and nonlinear Granger causality 
models for detecting causal relationships. 
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System Overview

Logs Binning
t
t+1
…

Causal Modeling
1. Linear Granger 

Causality models
2. Nonlinear Granger 

Causality models

B ----->g A
B ----->g C

…

Fault Injection

Log Modeling
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Problem Modeling & AI Methodologies

§ Log Modeling

– Log Data Collection: Inject a fault into one 
microservice of a subset of microservices of 
TrainTicket and collect the normal or erroneous 
logs from affected microservices by the faulty 
microservice. 

– Log Labeling: 
• Error patterns, e.g.,  “HTTP 500 Internal 

Server Error”

– Binning logs as time series:
• Use different time bin sizes (10ms,  100ms, 

1s) and count the number of error logs from 
each microservice in each bin.  
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Problem Modeling & AI Methodologies

§ Causal Modeling
– In practice, Granger causality is more straightforward 

and robust for learning causal relationships among 
multivariate time series.

– Linear Granger Causality Modeling: Vector Auto-
Regression (VAR) models.

• BLR and BLasso

– Nonlinear Granger Causality Modeling: use the 
nonlinear autoregressive function 𝑓(#) for Granger 
causality problem in time series analysis. 

• cMLP and cLSTM
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Experiments

§ Data:
– Synthetic data

• Linear VAR data: the time series data are generated with linear VAR model. 
• Lorenz-96 data: the time series data are generated with nonlinear Lorenz-96 model [13]. 
• Evaluation Metric: AUROC score. [16] 

– Benchmark data
• TrainTicket log data: collect log data by deleting the microservice ‘ts-basic-service’ from the 

system. 
• Evaluation Metrics: Precision, Recall, F1. 

§ Models:
– Linear Granger Causality models

• BLR(𝑞!): 𝑞! is for the regularization term.
• Blasso(𝜆): 𝜆 is for the regularization term.   
• MMPC(ParCorr): MMPC with partial correlation Conditional Independence testing

– Nonlinear Granger Causality models
• cMLP: with a single multilayer perceptron layer.
• cLSTM: with LSTM architecture.
• MMPC(RCoT): MMPC with RCoT Conditional Independence testing
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Results on Synthetic Data

K is the number of time series.
T is the number of samples. 
F is used to determine the nonlinear level and chaos in the time series. 
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Results on TrainTicket Data

12

1) We delete the microservice ‘ts-basic-service’ from the system which results in the other 
four microservice emitting error logs.  

2) 226 error logs are emitted.



© 2009 IBM Corporation

Results on TrainTicket Data

13

§ In this experiment, 
– All the models’ results shown in the table with 

their optimal parameter setting.  
– Linear Granger models performs better on this 

dataset from the results. 

§ Findings:
– If K (the number of time series) is small, cMLP

is the best candidate since it performs well on 
both linear and nonlinear Granger causality 
models even with a small T. 

– cLSTM model works better to capture more 
complicated nonlinear dependencies. 

– BLR and Blasso have good performance on 
linear time series data when T is large enough. 
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Conclusion & Future Work

§ Conclusion
– Hundreds to thousands of microservice and complex dependency relationships among 

them makes root casual analysis extremely challenging. 
– These dependency information is often unknown. 
– We develop a system using only log data to learn the dependency graph among 

microservices and carefully study the performance of linear and nonlinear Granger 
causality models on learning causal relationships. 

§ Future Work
– We will extend our analysis on a large dataset involving multiple faults and 

microservices.
– We also want to develop new deep causal models for causal learning, which can directly 

take the raw log data as inputs. 
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