

Introduction

In large scale and complex IT service environments, a problematic incident is logged as a ticket and contains the ticket summary (sys tem status and problem description). The system administrators log the step-wise resolution description when such tickets are resolved. The repeating service events are most likely resolved by inferring similar historical tickets. With the availability of reasonably large ticket datasets, we can have an automated system to recommend the best matching resolution for a given ticket summary.

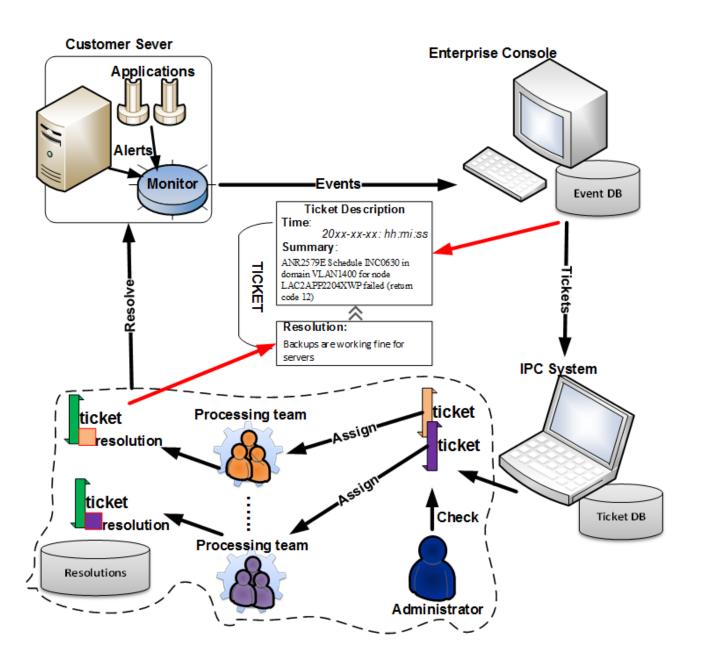
In this work, we first identify the challenges in real-world ticket analysis and develop an integrated framework to efficiently handle those challenges.

Challenge 1. How to quantify the quality of the ticket resolution? Earlier studies generally assumed that the tickets with similar descriptions should have similar resolutions, and often treated all such ticket resolutions equally. However, the study [39] demonstrated that not all of the resolutions are equally worthy recommending. In order to develop an effective resolution recommendation model, low-quality resolutions should be ranked lower than high-quality resolutions.

Challenge 2. How to make use of the historical tickets along with their resolution quality for effective automation of IT service management? Although, it might be intuitive to search for historical tickets with the most similar ticket summary, and recommend their resolutions as potential solutions to the target ticket [39], such an approach might not be effective due to 1) the difficulty in representing the ticket summary and resolution, and 2) the avoidance of the resolution quality quantification.

Proposed Solutions

- Carefully identify relevant features and then build a regression model to quantify ticket resolution quality
- Train a deep neural network ranking model using tickets along with their quality scores obtained from the resolution quality quantification.
- ✤ Integrate sentence model into the neural network structure which can emit efficient representation for the ticket summary and resolution



Background

Figure 1: Information Technology Infrastructure Library (ITIL) Service Management System

1. A monitoring agent on a server keeps track of the system statistics and triggers an alert when a problem is detected.

2. If an alert persists beyond the specified duration, an event is triggered. Such events are consolidated into an enterprise console, which uses rule-based, casebased or knowledge-based engines to analyze the events and determines whether or not to create an incident ticket in the IPC system.

3. Incident ticket are manually or automatically assigned to domain experts for further system diagnosis and remedy.

4. The system administrators log the step-wise resolution description when such tickets are resolved

SEVERITY	FIRST-OCCURRENCE LAST-OCCURRENCE			
0	2014-03-29 05:50:39 2014-03-31 05:36:01			
SUMMARY	ANR2579E Schedule INC0630 in domain VLAN1400			
	for node LAC2APP2204XWP failed (return code 12)			
RESOLUTION	Backups are working fine for the server.			
CAUSE	ACTIONABLE LAST-UPDATE			
Maintenance	Actionable	2014-04-29 23:19:25		

His	storical T Data
	Fea
_	Othe Applicat
	Ticket Clustering
 The training of preprocessed The preproce 	in ord

- an incoming ticket.

STAR: A System for Ticket Analysis and Resolution

Wubai Zhou¹, Wei Xue¹, Ramesh Baral¹, Qing Wang¹, Chunqiu Zeng¹, Tao Li^{1,2}, Jian Xu³, Zheng Liu², Larisa Shwartz⁴, and Genady Ya. Grabarnik⁵

¹School of Computing and Information Sciences, Florida International University, Miami, FL, USA; ²School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, China; ³School of Computer science and Engineering, Nanjing University of Science and Technology, Nanjing, China; ⁴IBM T.J. Watson Research Center, Yorktown Heights, NY, USA; ⁵Dept. Math & Computer Science, St. John's University, Queens, NY, USA

A typical workflow of problem detection, determination and resolution in IT service management is prescribed by the Information Technology Infrastructure Library (ITIL) specification and is illustrated in Fig. 1.

Table1: A sample historical ticket

System Overview

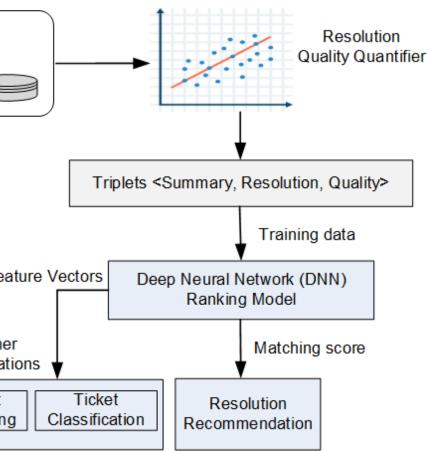


Figure 2: Overview of the proposed system

aken from the historical tickets dataset are first der to quantify and evaluate the quality of the resolution. result is then represented as a triplet of the ticket summary, its resolution text, and the quality score.

These triplets are the training data for the proposed deep neural network (DNN) ranking model. The trained DNN model outputs a matching score of a quantified ticket resolution for an incoming ticket summary. The resolutions with the top N highest matching score can be recommended for

• The model's intermediate result is a feature vector for a ticket representation. Such vectors are used in other ticket analysis tasks, such as ticket classification and ticket clustering

Ticket Resolution Quality Quantification

Shown in Table 1, a ticket resolution is a textual attribute of a ticket. A high quality ticket resolution is supposed to be well written and informative enough to describe the detailed actions taken to fix the problem specified in the ticket summary

We've found that for a typical ticket, the ticket resolution quality is driven by the 33 features that can be broadly divided into following four groups: 1) Character-level features, Entity-level features, Semantic-level features, **Attribute-level features**

Concept	Pattern	Examples
Action	NOUN/NP preceded/succeeded by VERB	(file) is (deleted)
Problem	NOUN/NP preceded/succeeded by ADJ/VERB	(capacity) is (full)

Evaluated three of the most popular regression models (logistic regression, gradient boosting tree and random forest[3]) on the labeled real-world ticket dataset and found that the random forest performed best for the ticket resolution quantification and also for evaluation of the feature importance, as illustrated in the Table 2

Feature Group	Importa		
Feature	Rank	Mean	Variance
Character-features			
uppercaseRatio	12	0.026123	0.008717
lowercaseRatio	10	0.049657	0.008206
punctuationRatio	11	0.036442	0.008710
whitespaceRatio	9	0.049123	0.008610
Entity-level features			
servernameNumber	13	0.018770	0.008553
Semantic-level features			
VERBRatio	7	0.079400	0.009091
NOUNRatio	4	0.088025	0.009420
ADJRatio	14	0.013885	0.009048
ADVRatio	5	0.084971	0.008327
DETRatio	8	0.055133	0.008147
PRTRatio	3	0.090921	0.022932
PUNCTRatio	15	0.008797	0.008228
problemNum	6	0.080322	0.008480
actionNum	2	0.147252	0.038538
Attribute-level features			
resolutionLength	1	0.152234	0.043585
MSE Avg.	0.010269	MSE Var.	0.004163

Table 2: Illustration of the top 15 ranked features and their rank evaluated by the random forest regression model. To best evaluate the feature importance score, we show the rank of average importance score, its mean and variance. The best performance in the metric of both MSE (mean square error) average and variance is attached of the end.

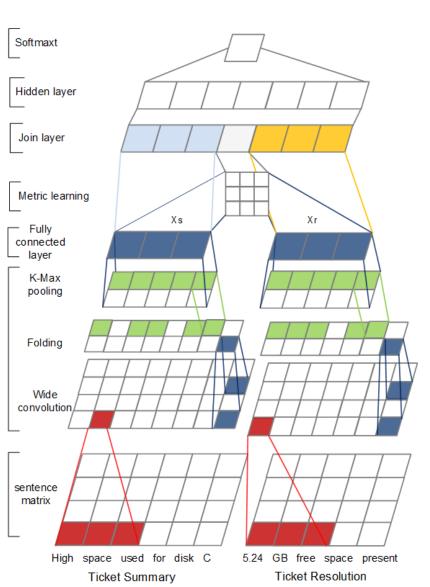


Figure 3: Ranking Model. The character level embedding is not shown for the sake of saving space.

Deep Neural Ranking Architecture

Given the triplets $\{< s_1, r_1, q_1 >, < s_2, r_2, q_2 >, ..., < s_n, r_n, q_n >\}$ from **Resolution Quality Quantifier** where s_i and r_i are ticket summary and ticket resolution for the *i*th ticket, and q_i is the quality score assigned by the quantifier.

Figure 3 shows the deep neural ranking model we proposed to solve the ticket resolution recommendation problem. The model consists of two sentence model[13] for mapping ticket summary and resolution to their vector representation, respectively.

Automating Ticket Resolution

Datasets	0 /					** 1.1	
	System				aining	Validation	Testing
Resolution Quality Quantifier				er	5000	_	1000
Ticket Resolution Automation				on 45	50,000	20,000	9,000
Tick	Ticket Clustering				0,000	_	2,000
Ticke	Ticket Classification		2	0,000	-	3,000	
					-		
System	p1	MAP	nDCG5	nDCG10	SMT:	Statistical Ma	achine
SMT	0.421	0.324	0.459	0.501	Trans	lation[28]	
LSTM-RNN	0.563	0.367	0.572	0.628	_		
Random Shuffle	0.343	0.273	0.358	0.420	LSTM	I-RNN: seque	ence to sequ
CombinedLDAKNN	0.482	0.347	0.484	0.536	transl	ation model[3	1]
Our method	0.742	0.506	0.628	0.791	Comb	inedLDAKN	NIC201

Table 3: Overall Performance

Other Ticket Analysis Applications

Clustering

Category	Measure	Formula	Note
Surface	Jaccard [9]	$S_{JAC}(T_1, T_2) = \frac{ A \cap B }{ A \cup B }$	A and B be sets of words in two ticket descriptions
Matching Similarity	N-word overlap [1]	$S_{nwo}(T_1, T_2) = \tanh(\frac{overlap_{phrase}(T_1, T_2)}{n_1 + n_2})$	A phrasal n-word overlap
Shiniarity	NLCS [11]	$S_{NLCS}(T_1, T_2) = \frac{(LCS(T_1, T_2))^2}{ T_1 \times T_2 }$	Considering the length of both the shorter and the longer string
	Leacock & Chodorow [15]	$S_{lch}(c_1, c_2) = -\frac{\log len(c_1, c_2)}{2 \times D}$	Path-based method using wordnet
Semantic	RES [27]	$S_{res}(c_1, c_2) = IC(lcs(c_1, c_2))$	Information content-based method
Similarity	Word2vec-based [20]	$S_{w2v}(w_1, w_2)$	Word2vec based word similarity using wikipedia
	ISLAM's measure [11]	$S_{STS}(T_1, T_2) = \frac{(\delta(1 - w_f + w_f S_o) + \sum_{i=1}^{\rho} \rho_i) \times (m+n)}{2mn}$	Combining string similarity, semantic similarity and common-word order similarity
	Li's measure [17]	$S_{SSI}(T_1, T_2) = \delta \frac{s_1 \cdot s_2}{\ s_1\ \cdot \ s_2\ } + (1 - \delta) \frac{\ r_1 - r_2\ }{\ r_1 + r_2\ }$	Considering semantic similarity and word-order similarity
Hybrid Similarity	SyMSS [22]	$S_{symss}(T_1, T_2) = \frac{1}{n} \sum_{i=1}^{n} sim(h_{1i}, h_{2i}) - l \times PF$	Considering semantic and syntactic info
Similarity	our method	$S_{TicDNN}(s1, s2) = cosine(x_{s1}, x_{s2})$	x_s is the vector representation for ticket summary s

Table 4: The evaluated similarity measures including 3 categories and 10 measures. The distributed representation for tickets learned in our model capture both string and semantic similarity, thus we categorize it as hybrid similarity.

Measures	F1 score			
wieasures	Worst	Avg.	Best	
S _{JAC}	0.4318	0.5677	0.7024	
Snwo	0.4763	0.5998	0.7043	
S_{NLCS}	0.5325	0.6332	0.7221	
Slch	0.6823	0.7427	0.7866	
Sres	0.6885	0.7576	0.7969	
S_{w2v}	0.7538	0.8169	0.8693	
S _{STS}	0.8048	0.8553	0.8953	
S _{SSI}	0.8035	0.8497	0.8834	
Ssymss	0.8042	0.8503	0.8885	
S _{TicDNN}	0.8103	0.8595	0.9002	

Table 5: Comparisons of F1 scores using different similarity measures.

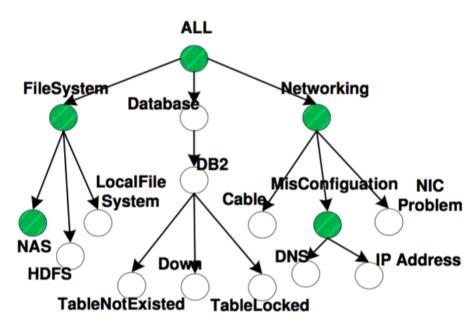
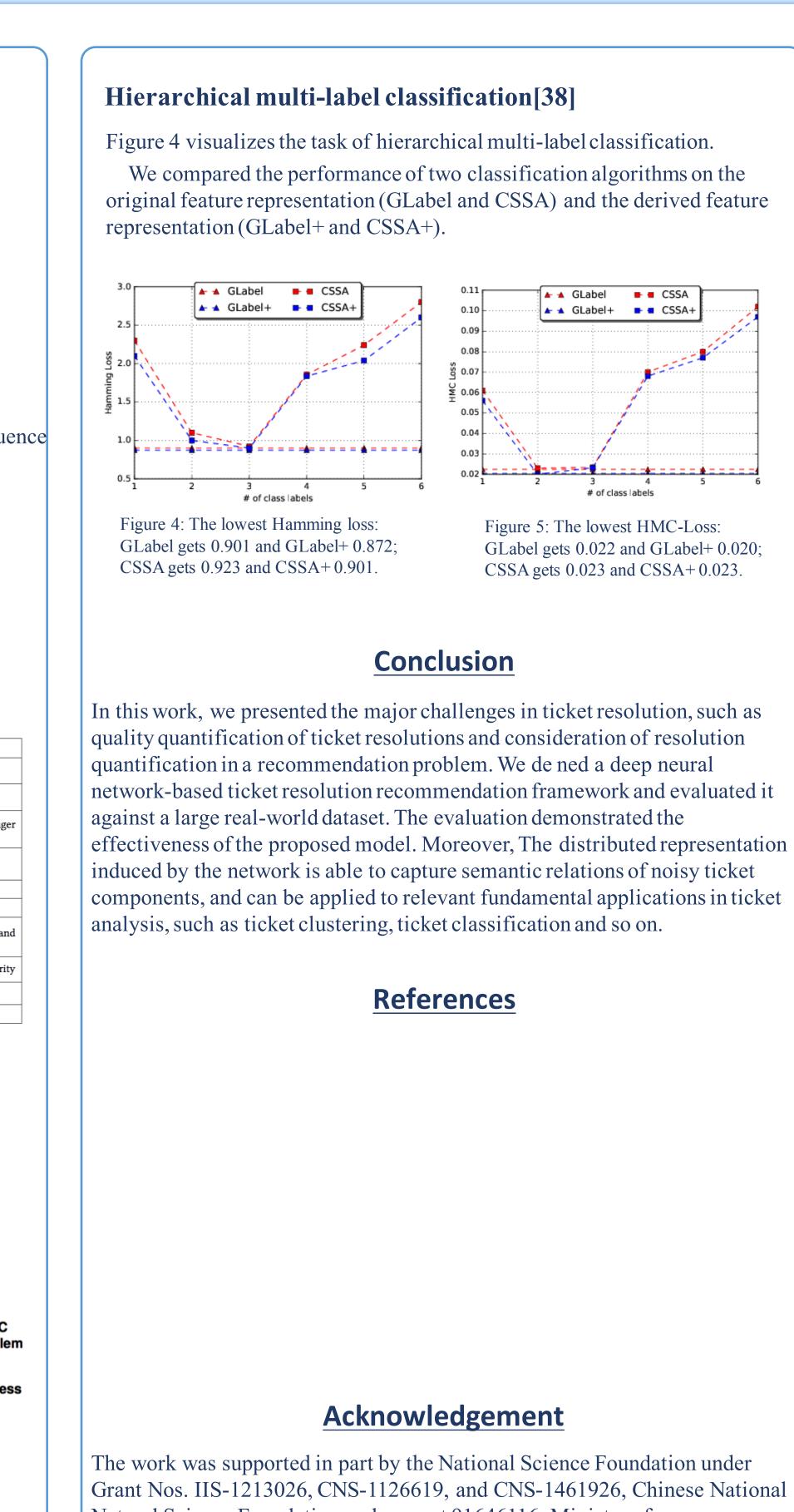


Figure 4: Hierarchical multi-label classification task.



Natural Science Foundation under grant 91646116, Ministry of Education/China Mobile joint research grant under Project No.5-10, and an FIU Dissertation Year Fellowship