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ABSTRACT
Contextual multi-armed bandit problems have gained increasing
popularity and attention in recent years due to their capability of
leveraging contextual information to deliver online personalized
recommendation services (e.g., online advertising and news article
selection). To predict the reward of each arm given a particular con-
text, existing relevant research studies for contextual multi-armed
bandit problems often assume the existence of a fixed yet unknown
reward mapping function. However, this assumption rarely hold-
s in practice, since real-world problems often involve underlying
processes that are dynamically evolving over time.

In this paper, we study the time varying contextual multi-armed
problem where the reward mapping function changes over time. In
particular, we propose a dynamical context drift model based on
particle learning. In the proposed model, the drift on the reward
mapping function is explicitly modeled as a set of random walk
particles, where good fitted particles are selected to learn the map-
ping dynamically. Taking advantage of the fully adaptive inference
strategy of particle learning, our model is able to effectively cap-
ture the context change and learn the latent parameters. In addi-
tion, those learnt parameters can be naturally integrated into exist-
ing multi-arm selection strategies such as LinUCB and Thompson
sampling. Empirical studies on two real-world applications, in-
cluding online personalized advertising and news recommendation,
demonstrate the effectiveness of our proposed approach. The ex-
perimental results also show that our algorithm can dynamically
track the changing reward over time and consequently improve the
click-through rate.
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1. INTRODUCTION
Online personalized recommender systems strive to promptly

feed the consumers with appropriate items (e.g., advertisements,
news articles) according to the current context including both the
consumer and item content information, and try to continuously

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’16, August 13-17, 2016, San Francisco, CA, USA
© 2016 ACM. ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2939672.2939878

maximize the consumers’ satisfaction in the long run. To achieve
this goal, it becomes a critical task for recommender systems to
track the consumer preferences instantly and to recommend the in-
teresting items to the users from a large item repository.

However, identifying the appropriate match between the con-
sumer preferences and the target items is quite difficult for recom-
mender systems due to several existing challenges in practice [18].
One is the well-known cold-start problem since a significant num-
ber of users/items might be completely new to the system, that
is, they may have no consumption history at all. This problem
makes recommender systems ineffective unless additional informa-
tion about both items and users is collected [9][7]. Second, both
the popularity of item content and the consumer preferences are
dynamically evolving over time. For example, the popularity of a
movie usually keeps soaring for a while after its first release, then
gradually fades away. Meanwhile, user interests may evolve over
time.

Herein, a context-based exploration/exploitation dilemma is i-
dentified in the aforementioned setting. A tradeoff between two
competing goals needs to be considered in recommender systems:
maximizing user satisfaction using the consumption history, while
gathering new information for improving goodness of match be-
tween user preference and items [16]. This dilemma is typically
formulated as a contextual multi-armed bandit problem where each
arm corresponds to one item. The recommendation algorithm de-
termines the strategies for selecting an arm to pull according to the
contextual information at each trial. Pulling an arm indicates the
corresponding item is recommended. When an item matches the
user preference (e.g., a recommended news article or ad is clicked),
a reward is obtained; otherwise, there is no reward. The reward
information is fed back to the algorithm to optimize the strategies.
The optimal strategy is to pull the arm with the maximum expected
reward with respect to the contextual information on each trial, and
then to maximize the total accumulated reward for the whole series
of trials.

Recently, a series of algorithms for contextual multi-armed ban-
dit problems have been reported with promising performance under
different settings, including unguided exploration (e.g., ϵ-greedy [26]
and epoch-greedy [15]) and guided exploration (e.g., LinUCB [16]
and Thompson Sampling [8]). These existing algorithms take the
contextual information as the input and predict the expected reward
for each arm, assuming the reward is invariant under the same con-
text. However, this assumption rarely holds in practice since the
real-world problems often involve some underlying processes that
are dynamically evolving over time and not all latent influencing
factors are included in the context information. As a result, the ex-
pected reward of an arm is time varying even though the contextual
information does not change.



A Motivated Example: Here we use a news recommendation
example to illustrate the time varying behaviors of the reward. In
the example, the click through rate (abbr., CTR) and the news arti-
cles correspond to the reward and the arms, respectively. Five news
articles are randomly selected and their corresponding user-article
interaction records are extracted from the Yahoo! news reposito-
ry [17, 16]. The context consists of both the user and article infor-
mation. Although the context information of each article does not
change, its average CTR varies dynamically over time as shown
in Figure 1. The same contextual information may have different
impacts on the CTR at different times.
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Figure 1: Given the same contextual information for each article,
the average CTR distribution of five news articles from Yahoo!
news repository is displayed. The CTR is aggregated by every hour.

In this paper, to capture the time varying behaviors of the re-
ward in contextual multi-armed bandit problems, we propose a dy-
namical context drift model based on particle learning and devel-
op effective on-line inference algorithms. The dynamic behaviors
of the reward is explicitly modeled as a set of random walk parti-
cles. The fully adaptive inference strategy of particle learning al-
lows our model to effectively capture the context change and learn
the latent parameters. In addition, the learnt parameters can be nat-
urally integrated into existing multi-arm selection strategies such
as LinUCB and Thompson sampling. We conduct empirical
studies on two real-world applications, including online personal-
ized advertising and news recommendation and the experimental
results demonstrate the effectiveness of our proposed approach.

The rest of this paper is organized as follows. In Section 2, we
describe a brief summary of prior work relevant to the contextual
multi-armed bandit problem and the online inference with particle
learning. We formulate the problem in Section 3. The solution
to the problem is presented in Section 4. Extensive empirical e-
valuation results are reported in Section 5. Finally, we reach the
conclusion in Section 6.

2. RELATED WORK
In this paper, we come up with a context drift model to deal

with the contextual multi-armed bandit problem, where the dynam-
ic behaviors of reward is explicitly considered. A sequential online
inference method is developed to learn the latent unknown param-
eters and infer the latent states simultaneously. In this section, we
highlight existing literature studies that are related to our proposed
approach for online context-aware recommendation.

2.1 Contextual Multi-armed Bandit
Our work is primarily relevant to the research area in the multi-

armed bandit problem which was first introduced in [22]. The

multi-armed bandit problem is identified in diverse applications,
such as online advertising [20, 14], web content optimization [21,
1], and robotic routing [4]. The core task of the multi-armed ban-
dit problem is to balance the tradeoff between exploration and ex-
ploitation. A series of algorithms have been proposed to deal with
this problem including ϵ-greedy [26], upper confidence bound (UCB)
[5, 19], EXP3 [3], and Thompson sampling [2].

Contextual multi-armed bandit problem is an instance of bandit
problem, where the contextual information is utilized for arm se-
lection. It is widely used for personalized recommendation service
to address the cold-start problem [9]. Lots of existing multi-
armed bandit algorithms have been extended to incorporating the
contextual information.

Contextual ϵ-greedy algorithm has been introduced by extending
the ϵ-greedy strategy with the consideration of context [5]. This
algorithm chooses the best arm based on current knowledge with
the probability 1 − ϵ, while chooses one arm uniformly with the
probability ϵ.

Both LinUCB and LogUCB algorithms extend the UCB algo-
rithm to contextual bandits [5, 19]. LinUCB assumes a linear
mapping function between the expected reward of an arm and its
corresponding context. In [19], the LogUCB algorithm is proposed
to deal with the contextual bandit problem based on logistic regres-
sion.

Thompson sampling [8], one of earliest heuristics for the ban-
dit problem, belongs to the probability matching family. Its main
idea is to randomly allocate the pulling chance according to the
probability that an arm gives the largest expected reward given the
context.

A most recent research work on the contextual bandit problem
in [25] comes up with a novel parameter-free algorithm based on a
principled sampling approach. This approach makes use of the on-
line bootstrap sample to derive the distribution of estimated models
in an on-line manner. In [24], an ensemble strategies combined
with a meta learning paradigm is proposed to stabilize the output
of contextual bandit algorithms.

These existing algorithms make use of the contextual informa-
tion to predict the expected reward for each arm, with the assump-
tion that the reward is invariant under the same context. However,
this assumption rarely holds in real applications. Our paper pro-
poses a context drift model to deal with the contextual multi-armed
bandit problem by taking the dynamic behaviors of reward into ac-
count.

2.2 Sequential Online Inference
Our proposed model makes use of sequential online inference

to infer the latent state and learn unknown parameters. Popular
sequential learning methods include sequential monte carlo sam-
pling [12], and particle learning [6].

Sequential Monte Carlo (SMC) methods consist of a set of Monte
Carlo methodologies to solve the filtering problem [11]. It provides
a set of simulation based methods for computing the posterior dis-
tribution. These methods allow inference of full posterior distribu-
tions in general state space models, which may be both nonlinear
and non-Gaussian.

Particle learning provides state filtering, sequential parameter
learning and smoothing in a general class of state space model-
s [6]. Particle learning is for approximating the sequence of filter-
ing and smoothing distributions in light of parameter uncertainty
for a wide class of state space models. The central idea behind
particle learning is the creation of a particle algorithm that directly
samples from the particle approximation to the joint posterior dis-
tribution of states and conditional sufficient statistics for fixed pa-



rameters in a fully-adapted resample-propagate framework.
We borrow the idea of particle learning for both latent state infer-
ence and parameter learning.

3. PROBLEM FORMULATION
In this section, we formally define the contextual multi-armed

bandit problem first, and then model the time varying contextual
multi-armed bandit problem. Some important notations mentioned
in this paper are summarized in Table 1.

Table 1: Important Notations

Notation Description

a(i) the i-th arm.
A the set of arms, A = {a(1), ..., a(K)}.
xt the context at time t, and represented by a vec-

tor.
rk,t the reward of pulling the arm a(k) at time t,

a(k) ∈ A.
yk,t the predicted reward for the arm a(k) at time t.
Pk the set of particles for the arm a(k) and P(i)

k is
the ith particle of Pk.

Sπ,t the sequence of (xi, π(xi), rπ(xi)) observed
until time t.

wk the coefficient vector used to predict reward of
the arm a(k).

cwk the constant part of wk.
δw,t the drifting part of wk at time t.
ηk,t the standard Gaussian random walk at time t,

given ηk,t−1.
θk the scale parameters used to compute δw,t.
π the policy for pulling arm sequentially.
Rπ the cumulative reward of the policy π.
fa(k)(xt) the reward prediction function of the arm a(k),

given context xt.
σ2
k the variance of reward prediction for the arm

a(k).
α, β the hyper parameters determine the distribution

of σ2
k.

µw, Σw the hyper parameters determine the distribution
of wk.

µc, Σc the hyper parameters determine the distribution
of cwk .

µθ , Σθ the hyper parameters determine the distribution
of θk.

µη , Ση the hyper parameters determine the distribution
of ηk,t.

3.1 Basic Concepts and Terminologies
Let A be a set of arms, denoted as A = {a(1), a(2)..., a(K)},

where K is the number of arms. A d-dimensional feature vector
xt ∈ X represents the contextual information at time t, and X
is the d-dimensional feature space. The contextual multi-armed
problem involves a series of decisions over a finite but possibly
unknown time horizon T . A policy π makes a decision at each
time t ∈ [1, T ] to select the arm π(xt), one of K arms, to pull
based on the contextual information xt. After pulling an arm, the
policy receives a reward from the selected arm. The reward of an
arm a(k) at time t is denoted as rk,t, whose value is drawn from
an unknown distribution determined by the context xt presented to

arm a(k). However the reward rk,t is not available unless arm a(k)

is pulled. The total reward received by the policy π is

Rπ =

T∑
t=1

rπ(xt),

and the goal of the policy π is to maximize the total reward Rπ .
Before selecting one arm at time t, a policy π typically learns a

model to predict the reward for every arm according to the histori-
cal observation, Sπ,t−1 = {(xi, π(xi), rπ(xi))|1 ≤ i < t}, which
consists of a sequence of triplets. The reward prediction helps the
policy π make decisions to increase the total reward.

Assume yk,t is the predicted reward of the arm a(k), which is
determined by

yk,t = fa(k)(xt), (1)

where the context xt is input and fa(k) is the reward mapping func-
tion for arm a(k).

One popular mapping function is defined as the linear combina-
tion of the feature vector xt, which has been successfully used in
bandit problems [16][2]. Specifically, fa(k)(xt) is formally given
as follows:

fa(k)(xt) = xᵀ
twk + εk, (2)

where xᵀ
t is the transpose of contextual information xt, wk is a

d-dimensional coefficient vector, and εk is a zero-mean Gaussian
noise with variance σ2

k, i.e., εk ∼ N (0, σ2
k). Accordingly,

yk,t ∼ N (xᵀ
twk, σ

2
k). (3)

In this setting, a graphical model representation is provided in Fig-
ure 2a. The context xt is observed at time t. The predicted reward
value yk,t depends on random variable xt, wk, and σ2

k. A conju-
gate prior distribution for the random variables wk and σ2

k is as-
sumed and defined asNIG(i.e., Normal Inverse Gamma) distribu-
tion with the hyper parameters µw, Σw, α, and β. The distribution
is denoted asNIG(µw,Σw, α, β) and shown below:

wk|σ2
k ∼ N (µw, σ2

kΣw),

σ2
k ∼ IG(α, β),

(4)

where the hyper parameters are predefined.
A policy π selects one arm a(k) to pull according to the reward

prediction model. After pulling arm a(k) at time t, a corresponding
reward rk,t is observed, while the rewards of other arms are stil-
l hidden. A new triplet (xt, π(xt), rπ(xt)) is obtained and a new
sequence Sπ,t is formed by combining Sπ,t−1 with the new triplet.
The posterior distribution of wk and σ2

k given Sπ,t is aNIG distri-
bution. Denoting the parameters ofNIG distribution at time t− 1
as µwt−1 , Σwt−1 , αt−1, and βt−1, the hyper parameters at time t
are updated as follows:

Σwt = (Σwt−1

−1 + xtx
ᵀ
t )

−1,

µwt = Σwt(Σwt−1

−1µwt−1 + xtrπ(xt)),

αt = αt−1 +
1

2
,

βt = βt−1 +
1

2
[r2π(xt) + µᵀ

wt−1
Σwt−1

−1µwt−1 − µᵀ
wt

Σwt

−1µwt ].

(5)

Note that, the posterior distribution of wk and σ2
k at time t is

considered as the prior distribution at time t + 1. On the basis
of the aforementioned inference, a series of algorithms, including
Thompson sampling and LinUCB, are proposed to address the con-
textual multi-armed bandit problem.
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Figure 2: Graphical model representation for bandit problem. Random variable is denoted as a circle. The circle with gray color filled means
the corresponding random variable is observed. Red dot represents a hyper parameter.

Thompson sampling, one of earliest heuristics for the bandit
problem [8], belongs to the probability matching family. Its main
idea is to randomly allocate the pulling chance according to the
probability that an arm gives the largest expected reward given the
context. Thompson sampling algorithm for the contextual multi-
armed bandit problem involves the following general structure at
time t:

1. For each arm a(k), its corresponding σ2
k and wk are drawn

fromNIG(µwt−1 ,Σwt−1 , αt−1, βt−1)
1.

2. The arm a∗ is selected to pull, and a reward of a∗ is obtained,
where a∗ = argmax1≤k≤K {x

ᵀ
twk}.

3. After observing the reward ra∗,t, the posterior distribution is
updated by Equation 5.

LinUCB, another successful contextual bandit algorithm, is an
extension of the UCB algorithm [16]. It pulls the arm with the
largest score LinUCB(λ), defined as below,

LinUCB(λ) = xᵀ
tµwt−1︸ ︷︷ ︸

reward expectation

+λ
1

σk

√
xᵀ
tΣ

−1
wt−1xt︸ ︷︷ ︸

reward deviation

. (6)

where λ is a parameter to combine the expectation and standard
deviation of reward.

Both LinUCB [16] and Thompson Sampling [8] will be incor-
porated into our dynamic context drift model. More details will be
discussed in Section 4 after modeling the context drift.

3.2 Dynamic Context Drift Modeling
As mentioned in Section 3.1, the reward prediction for arm a(k)

is conducted by a linear combination of contextual features xt, with
coefficient vector wk. Each element in the coefficient vector wk

indicates the contribution of the corresponding feature for reward
prediction. The aforementioned model is based on the assumption
that wk is unknown but fixed [2], which rarely holds in practice.
The real-world problems often involve some underlying processes.
These processes often lead to the dynamics in the contribution of
each context feature to the reward prediction. To account for the
dynamics, our goal is to come up with a model having the capability
of capturing the drift of wk over time and subsequently obtain a
better fitted model for the dynamic reward change. Let wk,t denote

1Note that most exiting works for Thompson sampling assume σ2
k

is known and wk is drawn fromN (µwt−1 ,Σwt−1)

the coefficient vector for arm a(k) at time t. Taking the drift of wk

into account, wk,t is formulated as follows:

wk,t = cwk + δwk,t , (7)

where wk,t is decomposed into two components including both
the stationary component cwk and the drift component δwk,t . Both
components are d-dimensional vectors. Similar to modeling wk in
Figure 2a, the stationary component cwk can be generated with a
conjugate prior distribution

cwk ∼ N (µc, σ
2
kΣc), (8)

where µc and Σc are predefined hyper parameters as shown in Fig-
ure 2b.

However, it is difficult to model the drift component δwk,t with a
single function due to the diverse characteristics of the context. For
instance, in Figure 1, given the same context, the CTRs of some
articles change quickly, while some articles may have relatively
stable CTRs. Moreover, the coefficients for different elements in
the context feature can change with diverse scales. To simplify the
inference, we assume that each element of δwk,t drifts indepen-
dently. Due to the uncertainty of drifting, we formulate δwk,t with
a standard Gaussian random walk ηk,t and a scale variable θk using
the following Equation:

δwk,t = θk ⊙ ηk,t, (9)

where ηk,t ∈ Rd is the drift value at time t caused by the standard
random walk and θk ∈ Rd contains the changing scales for all the
elements of δwk,t . The operator ⊙ is used to denote the element-
wise product. The standard Gaussian random walk is defined with
a Markov process as shown in Equation 10.

ηk,t = ηk,t−1 + v, (10)

where v is a standard Gaussian random variable defined by v ∼
N (0, Id), and Id is a d × d-dimensional identity matrix. It is e-
quivalent that ηk,t is drawn from the Gaussian distribution

ηk,t ∼ N (ηk,t−1, Id). (11)

The scale random variable θk is generated with a conjugate prior
distribution

θk ∼ N (µθ, σ
2
kΣθ), (12)

where µθ and Σθ are predefined hyper parameters. σ2
k is drawn

from the Inverse Gamma (abbr., IG) distribution provided in E-
quation 4.



Combining Equations 7 and 9, we obtain

wk,t = cwk + θk ⊙ ηk,t. (13)

According to Equation 2, yk,t is computed as

yk,t = xᵀ
t (cwk + θk ⊙ ηk,t) + ϵk. (14)

Accordingly, yk,t is modeled to be drawn from the following
Gaussian distribution

yk,t ∼ N (xᵀ
t (cwk + θk ⊙ ηk,t), σ

2
k). (15)

The new context drift model is presented with a graphical model
representation in Figure 2b. Compared with the model in Figure 2a,
a standard Gaussian random walk ηk,t and the corresponding scale
θk for each arm a(k) are introduced in the new model. The new
model explicitly formulates the drift of the coefficients for the re-
ward prediction, considering the dynamic behaviors of the reward
in real-world application. From the new model, each element val-
ue of cwk indicates the contribution of its corresponding feature
in predicting the reward, while the element values of θk show the
scales of context drifting for the reward prediction. A large ele-
ment value of θk signifies a great context drifting occurring to the
corresponding feature over time.

4. METHODOLOGY AND SOLUTION
In this section, we present the methodology for online inference

of the context drift model.
The posterior distribution inference involves four random vari-

ables, i.e., σ2
k, cwk , θk, and ηk,t. According to the graphical model

in Figure 2b, the four random variables are grouped into two cat-
egories: parameter random variable and latent state random vari-
able. σ2

k, cwk , θk are parameter random variables since they are
assumed to be fixed but unknown, and their values do not depend
on the time. Instead, ηk,t is referred to as a latent state random
variable since it is not observable and its value is time dependent
according to Equation 10. After pulling the arm a(k) according to
the context xt at time t, a reward is observed as rk,t. Thus, xt and
rk,t are referred to as observed random variables. Our goal is to in-
fer both latent parameter variables and latent state random variables
to sequentially fit the observed data. However, since the inference
partially depends on the random walk which generates the latent
state variable, we use the sequential sampling based inference s-
trategy that are widely used sequential monte carlo sampling [23],
particle filtering [10], and particle learning [6] to learn the distribu-
tion of both parameter and state random variables.

Since state ηk,t−1 changes over time with a standard Gaussian
random walk, it follows a Gaussian distribution after accumulat-
ing t − 1 standard Gaussian random walks. Assume ηk,t−1 ∼
N (µηk ,Σηk), a particle is defined as follows.

DEFINITION 1 (PARTICLE). A particle of an arm a(k) is a
container which maintains the current status information of a(k).
The status information comprises of random variables such as σ2

k,
cwk , θk, and ηk,t, and the parameters of their corresponding dis-
tributions such as α and β, µc and Σc, µθ and Σθ , µηk and Σηk .

4.1 Re-sample Particles with Weights
At time t − 1, each arm a(k) maintains a fixed-size set of parti-

cles. We denote the particle set as Pk,t−1 and assume the number
of particles in Pk,t−1 is p. Let P(i)

k,t−1 be the ith particles of arm

a(k) at time t − 1, where 1 ≤ i ≤ p. Each particle P(i)
k,t−1 has a

weight, denoted as ρ(i), indicating its fitness for the new observed

data at time t. Note that
∑p

i=1 ρ
(i) = 1. The fitness of each parti-

cle P(i)
k,t−1 is defined as the likelihood of the observed data xt and

rk,t. Therefore,

ρ(i) ∝ P (xt, rk,t|P(i)
k,t−1). (16)

Further, yk,t is the predicted value of rk,t. The distribution of
yk,t, determined by cwk , θk, σ2

k and ηk,t, is given in Equation 15.
Therefore, we can compute ρ(i) in proportional to the density value
given yk,t = rk,t. Thus,

ρ(i) ∝
∫∫

ηk,t,ηk,t−1

{N (rk,t|xᵀ
t (cwk + θk ⊙ ηk,t), σ

2
k)

N (ηk,t|ηk,t−1, Id)N (ηk,t−1|µηk ,Σηk)}
dηk,t dηk,t−1,

where state variables ηk,t and ηk,t−1 are integrated out due to their
change over time, and cwk , θk, σ2

k are from P(i)
k,t−1. Then we

obtain

ρ(i) ∝ N (mk,Qk), (17)

where

mk = xᵀ
t (cwk + θk ⊙ µηk )

Qk = σ2
k + xᵀ

t ⊙ θk(Id +Σηk)θ
ᵀ
k ⊙ xt.

(18)

Before updating any parameters, a re-sampling process is conduct-
ed. We replace the particle set Pk with a new set P ′

k, where P ′
k is

generated from Pk using sampling with replacement based on the
weights of particles. Then sequential parameter updating is based
on P ′

k.

4.2 Latent State Inference
At time t − 1, the sufficient statistics for state ηk,t−1 are the

mean (i.e., µηk ) and the covariance (i.e., Σηk ). Provided with the
new observation data xt and rk,t at time t, the sufficient statistics
for state ηk,t need to be re-computed. We apply the Kalman fil-
tering [13] method to recursively update the sufficient statistics for
ηk,t based on the new observation and the sufficient statistics at
time t − 1. Let µ′

ηk
and Σ′

ηk be the new sufficient statistics of
state ηk,t at time t. Then,

µ′
ηk

= µηk +Gk(rk,t − xᵀ
t (cwk + θk ⊙ ηk,t−1))︸ ︷︷ ︸

Correction by Kalman Gain

,

Σ′
ηk = Σηk + Id − GkQkG

ᵀ
k︸ ︷︷ ︸

Correction by Kalman Gain

,
(19)

where Qk is defined in Equation 18 and Gk is Kalman Gain [13]
defined as

Gk = (Id +Σηk)θk ⊙ xtQ
−1
k .

As shown in Equation 19, both µ′
ηk

and Σ′
ηk are estimated with

a correction using Kalman Gain Gk(i.e., the last term in both two
formulas). With the help of the sufficient statistics for the state
random variable, ηk,t can be draw from the Gaussian distribution

ηk,t ∼ N (µ′
ηk
,Σ′

ηk). (20)

4.3 Parameter Inference
At time t − 1, the sufficient statistics for the parameter random

variables (σ2
k, cwk , θk) are (α, β, µc, Σc, µθ , Σθ).

Let zt = (xᵀ
t , (xt⊙ηk,t)ᵀ)ᵀ, Σ =

[
Σc 0
0 Σθ

]
, µ = (µc

ᵀ, µθ
ᵀ)ᵀ,

and νk = (cwk
ᵀ, θkᵀ)ᵀ where zt, µ, and ν are 2d-dimensional



vector, Σ is a 2d × 2d -dimensional matrix. Therefore, the infer-
ence of cwk and θk is equivalent to infer νk with its distribution
νk ∼ N (µ, σ2

kΣ). Assume Σ′, µ′, α′, and β′ be the sufficient s-
tatistics at time t which are updated based on the sufficient statistics
at time t− 1 and the new observation data. The sufficient statistics
for parameters are updated as follows:

Σ′ = (Σ−1 + ztz
ᵀ
t )

−1,

µ′ = Σ′(ztrk,t +Σµ),

α′ = α+
1

2
,

β′ = β +
1

2
(µᵀΣ−1µ+ r2k,t − µ′ᵀΣ′−1

µ′).

(21)

At time t, the sampling process for σ2
k and νk is summarized as

follows:

σ2
k ∼ IG(α′, β′),

νk ∼ N (µ′, σ2
kΣ

′).
(22)

4.4 Integration with Policies
As discussed in Section 3.1, both LinUCB and Thompson sam-

pling allocate the pulling chance based on the posterior distribution
of wk and σ2

k with the hyper parameters µw, Σw, α, and β.
As to the context drifting model, when xt arrives at time t, the

reward rk,t is unknown since it is not observed until one of arms is
pulled. Without observed rk,t, the particle re-sampling, latent state
inference, and parameter inference for time t can not be conducted.
Furthermore, every arm has p independent particles. Within each
particle, the posterior distributions of wk,t−1 are not available since
wk,t−1 has been decomposed into cwk , θk, and ηk,t−1 based on
Equation 13. We address these issues as follows.

Within a single particle of arm a(k), the distribution of wk,t−1

can be derived by

wk,t−1 ∼ N (µwk , σ
2
kΣwk), (23)

where

µwk = µc + (Σηk + σ2
kΣθ)

−1(Σηkµθ + σ2
kΣθµηk),

Σwk = σ2
kΣc + σ2

kΣθΣηk(Σηk + σ2
kΣθ)

−1.
(24)

Let w(i)
k,t−1, µ(i)

wk , σ2(i)
k , and Σ

(i)
wk be the random variables in the

i(th) particle. We use the mean of wk,t−1, denoted as w̄k,t−1, to
infer the decision in the bandit algorithm. Therefore,

w̄k,t−1 ∼ N (µ̄wk , Σ̄wk), (25)

where

µ̄wk =
1

p

p∑
i=1

µ(i)
wk

,

Σ̄wk =
1

p2

p∑
i=1

σ2(i)
k Σ(i)

wk
.

(26)

By virtual of Equation 25, both Thompson sampling and Lin-
UCB can address the bandit problem as mentioned in Section 3.1.
Specifically, Thompson sampling draws wk,t from Equation 25
and then predicts the reward for each arm with wk,t. The arm with
maximum predicted reward is selected to pull. While LinUCB s-
elects arm with a maximum score, where the score is defined as a
combination of the expectation of yk,t and its standard deviation,
i.e.,

E(yk,t|xt) + λ
√

V ar(yk,t|xt),

where λ is predefined parameter, E(yk,t|xt) and V ar(yk,t|xt) are
computed by

E(yk,t|xt) = xᵀ
twk,t.

V ar(yk,t|xt) = xᵀ
t Σ̄

−1
wk

xt +
1

p2

p∑
i=1

σ2
k.

4.5 Algorithm
Putting all the aforementioned things together, an algorithm based

on the context drifting model is provided below.

Algorithm 1 The algorithm for context drift model (Drift)

1: procedure MAIN(p) ◃ main entry
2: Initialize arms with p particles.
3: for t← 1, T do
4: Get xt.
5: a(k) = argmaxj=1,K EVAL(a(j),xt)

6: Receive rk,t by pulling arm a(k).
7: UPDATE(xt, a(k), rk,t).
8: end for
9: end procedure

10: procedure EVAL(a(k), xt) ◃ get a score for a(k), given xt.
11: Learn the parameters based on all particles’ inferences of

a(k) by Equation 25.
12: Compute a score based on the parameters learnt.
13: return the score.
14: end procedure

15: procedure UPDATE(xt, a(k), rk,t) ◃ update the inference.
16: for i← 1, p do ◃ Compute weights for each particle.
17: Compute weight ρ(i) of particle P(i)

k by Equation 17.
18: end for
19: Re-sample P ′

k from P according to the weights ρ(i)s.
20: for i← 1, p do ◃ Update statistics for each particle.
21: Update the sufficient statistics for ηk,t by Equation 19.
22: Sample ηk,t according to Equation 20.
23: Update the statistics for σ2

k, cwk , θk by Equation 21.
24: Sample σ2

k, cwk , θk according to Equation 22.
25: end for
26: end procedure

Online inference for contextual multi-armed bandit problem s-
tarts with MAIN procedure, as presented in Algorithm 1. As xt

arrives at time t, the EVAL procedure computes a score for each
arm, where the definition of score depends on the specific policy.
The arm with the highest score is selected to pull. After receiving
a reward by pulling an arm, the new feedback is used to update the
contextual drifting model by the UPDATE procedure. Especially
in the UPDATE procedure, we use the resample-propagate strat-
egy in particle learning [6] rather than the propagate-resample
strategy in particle filtering [10]. With the resample-propagate
strategy, the particles are re-sampled by taking ρ(i) as the ith par-
ticle’s weight, where the ρ(i) indicates the occurring probability
of the observation at time t given the particle at time t − 1. The
resample-propagate strategy is considered as an optimal and ful-
ly adapted strategy, avoiding an importance sampling step.

5. EMPIRICAL STUDY
To demonstrate the efficacy of our proposed algorithm, we con-

duct our experimental study over two real-world data sets including



the online search advertising data from Track 2 of KDD Cup 2012,
and the news recommendation data of Yahoo! Today News. Be-
fore diving into the detail of the experiment on each data set, we
first outline the general implementation of the baseline algorithms
for comparison. Second, we start with a brief description of the
data sets and their corresponding evaluation methods. We finally
show and discuss the comparative experimental results of both the
proposed algorithm and the baseline algorithms.

5.1 Baseline Algorithms
In the experiment, we demonstrate the performance of our method

by comparing with the following algorithms. The baseline algo-
rithms include:

1. Random: it randomly selects an arm to pull without consid-
ering any contextual information.

2. ϵ-greedy(ϵ) (or EPSgreedy): it randomly selects an arm
with probability ϵ and selects the arm of the largest predicted
reward with probability 1−ϵ, where ϵ is a predefined param-
eter. When ϵ = 0, it is equivalent to the Exploit policy.

3. GenUCB(λ): it denotes the general UCB algorithm for con-
textual bandit problems. It can be integrated with linear re-
gression model(e.g.,LinUCB [16]) or logistic regression mod-
el (e.g., LogUCB [19]) for reward prediction. Both LinUCB
and LogUCB take the parameter λ to obtain a score defined
as a linear combination of the expectation and the deviation
of the reward. When λ = 0, it becomes the Exploit policy
that has no exploration.

4. TS(q0): Thompson sampling described in Section 3.1, ran-
domly draws the coefficients from the posterior distribution,
and selects the arm of the largest predicted reward. The priori
distribution isN (0, q−1

0 I).

5. TSNR(q0): it is similar to TS(q0), but in the stochastic gradi-
ent ascent, there is no regularization by the prior. The priori
distributionN (0, q−1

0 I) is only used in the calculation of the
posterior distribution for the parameter sampling, but not in
the stochastic gradient ascent. When q0 is arbitrarily large,
the variance approaches 0 and TSNR becomes Exploit.

6. Bootstrap: it is non-Bayesian but an ensemble method
for arm selection. Basically, it maintains a set of bootstrap
samples for each arm and randomly pick one bootstrap sam-
ple for inference [25].

Our methods proposed in this paper include:

1. TVUCB(λ): it denotes the time varying UCB which integrates
our proposed context drift model with UCB bandit algorithm.
Similar to LinUCB, the parameter λ is given.

2. TVTP(q0): it denotes the time varying Thompson sampling
algorithm which is extended with our proposed context drift
model and the algorithm is outlined in Algorithm 1. The pa-
rameter q0, similar to TS(q0), specifies the prior distribution
of the coefficients.

5.2 KDD Cup 2012 Online Advertising

5.2.1 Description
Online advertising has become one of the major revenue sources

of the Internet industry for many years. In order to maximize the
Click-Though Rate (CTR) of displayed advertisements (ads), on-
line advertising systems need to deliver these appropriate ads to

individual users. Given the context information, sponsored search
which is one type of online advertising will display a recommend-
ed ad in the search result page. Practically, an enormous amount
of new ads will be continuously brought into the ad pool. These
new ads have to be displayed to users, and feedbacks have to be
collected for improving the system’s CTR prediction. Thereby, the
problem of ad recommendation can be regarded as an instance of
contextual bandit problem. In this problem, an arm is an ad, a pull
is an ad impression for a search activity, the context is the informa-
tion vector of user profile and search keywords, and the reward is
the feedbacks of user’s click on ads.

The experimental dataset is collected by a search engine and pub-
lished by KDD Cup 20122. In this dataset, each instance refers to
an interaction between a user and the search engine. It is an ad im-
pression, which consists of the user demographic information (age
and gender), query keywords, some ads information returned by the
search engine and click count on ads. In our work, the context is
represented as a binary feature vector of dimension 1,070,866, in-
cluding query entry and user’s profile information. And each query
entry denotes whether a query token is contained in the search
query or not. In the experiments, we use 1 million user visit events.

5.2.2 Evaluation Method
We use a simulation method to evaluate the KDD Cup 2012 on-

line ads data, which is applied in [8] as well. The simulation and
replayer [17] are two of the frequently used methods for the bandit
problem evaluation. As discussed in [8] and [25], the simulation
method performs better than replayer method when the item pool
contains a large number of recommending items, especially larg-
er than 50. The large number of recommending items leads to the
CTR estimation with a large variance due to the small number of
matched visits.

In this data set, we build our ads pool by randomly selecting
K = 100 ads from the entire set of ads. There is no explicit
time stamp associated with each ad impression, and we assume
the ad impression arrives in chronological order with a single time
unit interval between two adjacent impressions. The context in-
formation of these ads are real and obtained from the given data
set. However, the reward of the kth ad is simulated with a coef-
ficient vector wk,t, which dynamically changes over time. Let ϱ
be the change probability, where each coefficient keeps unchanged
with probability 1 − ϱ and varies dynamically with probability ϱ.
We model the dynamical change as a Gaussian random walk by
wk,t = wk,t + ∆w where ∆w follows the standard Gaussian
distribution, i.e., ∆w ∼ N (0, Id). Given a context vector xt

at time t, the click of the kth ad is generated with a probability
(1 + exp(−wT

k,txt))
−1. For each user visit and each arm, the ini-

tial weight vector wk,0 is drawn from a fixed normal distribution
that is randomly generated before the evaluation.

5.2.3 Context Change Tracking
With the help of the simulation method, we get a chance to know

the ground truth of the coefficients. Therefore, we first explore the
fitness of our model with respect to the true coefficient values over
time. Then we conduct our experiment over the whole online ads
data set containing 1 million impressions by using the CTR as the
evaluation metric.

We simulate the dynamical change of coefficients in multiple d-
ifferent ways including the random walk over a small segment of
data set shown in Figure 3. Sampling a segment of data containing
120k impressions from the whole data set, we assume a dynamical
change occurring on only one dimension of the coefficient vector,
2http:/www. kddcup2012.org/c/kddcup2012-track2
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Figure 3: A segment of data originated from the whole data set is
provided. The reward is simulated by choosing one dimension of
the coefficient vector, which is assumed to vary over time in three
different ways. Each time bucket contains 100 time units.

keeping other dimensions constant. In (a), we divide the whole
segment of data into four intervals, where each has a different co-
efficient value. In (b), we assume the coefficient value of the di-
mension changes periodically. In (c), a random walk mentioned
above is assumed, where ϱ = 0.0001. We compare our algorithm
Drift with the bandit algorithm such as LinUCB with Bayesian
linear regression for reward prediction. We set Drift with 5 par-
ticles. It shows that our algorithm can fit the coefficients better
than Bayesian linear regression and can adaptively capture the dy-
namical change instantly. The reason is that, Drift has a random
walk for each particle at each time and estimates the coefficient by
re-sampling these particles according to their goodness of fitting.

5.2.4 CTR Optimization for Online ADS
In this section, we evaluate our algorithm over the online ad-

s data in terms of CTR. The performance of each baseline algo-
rithm listed in Section 5.1 depends on the underlying reward pre-
diction model (e.g., logistic regression, linear regression) and its
corresponding parameters. Therefore, we first conduct the perfor-
mance comparison for each algorithm with different reward pre-
diction models and diverse parameter settings. Then the one with
best performance is selected to compare with our proposed algo-
rithm. The experimental result is presented in Figure 4. The al-
gorithm LogBoostrap(10) achieves better performance than
LinBootstrap(10) since our simulation method is based on
the Logit function.

Although our algorithms TVTP(1) and TVUCB(1) are based
on linear regression model, they can still achieve high CTRs and
their performance is comparable to those algorithms based on logis-
tic regression method such as, LogTS(0.001),LogTSnr(10).
The reason is that both TVTP and TVUCB are capable of capturing
the non-linear reward mapping function by explicitly considering
the context drift. The algorithm LogEpsGreedy(0.5) does not
perform well. The reason is that the value of parameter ϵ is large,
incurring lots of exploration.

5.3 Yahoo! Today News

5.3.1 Description
The core task of personalized news recommendation is to display
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Figure 4: The CTR of KDD CUP 2012 online ads data is given
for each time bucket. LogBooststrap, LogTS, LogTSnr, and
LogEpsGreedy are bandit algorithms with logistic regression
model. LinUCB, LinBoostrap, TVTP, and TVUCB are based
on linear regression model.

appropriate news articles on the web page for the users according
to the potential interests of individuals. However, it is difficult to
track the dynamical interests of users only based on the content.
Therefore, the recommender system often takes the instant feed-
backs from users into account to improve the prediction of the po-
tential interests of individuals, where the user feedbacks are about
whether the users click the recommended article or not. Addition-
ally, every news article does not receive any feedbacks unless the
news article is displayed to the user. Accordingly, we formulate the
personalized news recommendation problem as an instance of con-
textual multi-arm bandit problem, where each arm corresponds to a
news article and the contextual information including both content
and user information.

The experimental data set is a collection based on a sample of
anonymized user interaction on the news feeds, collected by Ya-
hoo! Today module and published by Yahoo! research lab3. The
dataset contains 28,041,015 visit events of user-news item interac-
tion data, collected by the Today Module from October 2nd, 2011
to October 16th, 2011 on Yahoo! Front Page. In addition to the
interaction data, user’s information, e.g., demographic information
(age and gender), behavior targeting features, etc., is provided for
each visit event, and represented as a binary feature vector of di-
mension 136. Besides, the interaction data is also stamped with the
user’s local time, which is suitable for contextual recommendation
and temporal data mining. This data set has been used for evaluat-
ing contextual bandit algorithms in[16][8][17]. In our experiments,
2.5 million user visit events are used.

5.3.2 Evaluation Method
We apply the replayer method to evaluate our proposal method

on the news data collection since the number of articles in the pool
is not larger than 50. The replayer method is first introduced in
[17], which provides an unbiased offline evaluation via the histori-
cal logs. The main idea of replayer is to replay each user visit to the
algorithm under evaluation. If the recommended article by the test-
ing algorithm is identical to the one in the historical log, this visit
is considered as an impression of this article to the user. The ratio
3http://webscope.sandbox.yahoo.com/catalog.php



Table 2: Relative CTR on Yahoo! News Data.

Algorithm Logistic Regression Linear Regression

mean std min max mean std min max

ϵ-greedy(0.01) 0.0644 0.00246 0.0601 0.0685 0.0554 0.00658 0.0374 0.0614
ϵ-greedy(0.1) 0.0633 0.00175 0.0614 0.0665 0.0626 0.00127 0.0599 0.0643
ϵ-greedy(0.3) 0.0563 0.00129 0.0543 0.0588 0.0583 0.00096 0.0564 0.0595
ϵ-greedy(0.5) 0.0491 0.00118 0.0471 0.0512 0.0522 0.00057 0.0514 0.0533

Bootstrap(1) 0.0605 0.00427 0.0518 0.0683 0.0389 0.01283 0.0194 0.0583
Bootstrap(5) 0.0615 0.00290 0.0578 0.0670 0.0400 0.01089 0.0194 0.0543
Bootstrap(10) 0.0646 0.00169 0.0611 0.0670 0.0448 0.00975 0.0216 0.0571
Bootstrap(30) 0.0644 0.00161 0.0612 0.0667 0.0429 0.01036 0.0226 0.0599

LinUCB(0.01) 0.0597 0.00184 0.0572 0.0633 0.0423 0.00912 0.0325 0.0608
LinUCB(0.1) 0.0444 0.00054 0.0434 0.0454 0.0612 0.00205 0.0561 0.0630
LinUCB(0.3) 0.0419 0.00047 0.0413 0.0429 0.0701 0.00132 0.0669 0.0712
LinUCB(0.5) 0.0410 0.00044 0.0402 0.0416 0.0702 0.00041 0.0693 0.0707
LinUCB(1.0) 0.0402 0.00055 0.0392 0.0411 0.0668 0.00035 0.0661 0.0673

TS(0.001) 0.0453 0.00050 0.0445 0.0463 0.0431 0.00373 0.0401 0.0536
TS(0.01) 0.0431 0.00074 0.0420 0.0448 0.0526 0.00188 0.0489 0.0548
TS(0.1) 0.0416 0.00081 0.0401 0.0433 0.0594 0.00155 0.0551 0.0606
TS(1.0) 0.0397 0.00040 0.0391 0.0404 0.0597 0.00070 0.0585 0.0607
TS(10.0) 0.0325 0.00833 0.0180 0.0432 0.0592 0.00071 0.0577 0.0603

TSNR(0.01) 0.0445 0.00052 0.0433 0.0454 0.0596 0.00040 0.0591 0.0605
TSNR(0.1) 0.0449 0.00066 0.0441 0.0463 0.0592 0.00084 0.0577 0.0605
TSNR(1.0) 0.0468 0.00071 0.0456 0.0479 0.0596 0.00069 0.0585 0.0606
TSNR(10.0) 0.0594 0.00168 0.0573 0.0619 0.0605 0.00053 0.0594 0.0614
TSNR(100.0) 0.0643 0.00293 0.0592 0.0679 0.0586 0.00201 0.0555 0.0614
TSNR(1000.0) 0.0641 0.00222 0.0609 0.0690 0.0535 0.00345 0.0482 0.0606

Parameter TVUCB Parameter TVTP

λ = 0.01 0.0427 0.0122 0.0278 0.0623 q0 = 0.001 0.0614 0.00139 0.0592 0.0644
λ = 0.1 0.0606 0.0038 0.0520 0.0651 q0 = 0.01 0.0648 0.00135 0.0611 0.0661
λ = 0.3 0.0643 0.0023 0.0585 0.0676 q0 = 0.1 0.0652 0.00091 0.06339 0.06655
λ = 0.5 0.0705* 0.0017 0.0689 0.0715 q0 = 1.0 0.0656 0.0012 0.0638 0.0669
λ = 1.0 0.06824 0.0024 0.0655 0.0714 q0 = 10 0.0624 0.0016 0.05938 0.0643

between the number of user clicks and the number of impressions
is referred as CTR. The work in [17] shows that the CTR estimated
by the replayer method approaches the real CTR of the deployed
online system if the items in historical user visits are randomly rec-
ommended.

5.3.3 CTR Optimization for News Recommendation
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Figure 5: The CTR of Yahoo! News data is given for each time
bucket. Those baseline algorithms are configured with their best
parameters settings.

Similar to the CTR optimization for online ads data in Section 5.2.4,

we first conduct the performance evaluation for each algorithm with
different regression models and parameter settings. The experi-
mental result is displayed in Table 2. The setting of each algorithm
with the highest reward is highlighted in bold. It can be observed
that our algorithm TVUCB(0.5) achieves the best performance a-
mong all algorithms. In four of all five parameter λ settings, the
performances of TVUCB consistently exceed the ones of LinUCB.

All baseline algorithms are configured with their best param-
eter settings provided by Table 2. We conduct the performance
comparison on different time buckets in Figure 5. The algorith-
m TVUCB(0.5) and EpsGreedy(0.01) outperforms other-
s among the first four buckets, known as cold-start phrase
when the algorithms are not trained with sufficient observations.
After the fourth bucket, the performance of both TVUCB(0.5)
and LinUCB(0.5) constantly exceeds the ones of other algo-
rithms. In general, TVTP(1.0) performs better than TS(1.0)
and TSNR(100), where all the three algorithms are based on the
Thompson sampling. Overall, TVUCB(0.5) consistently achieves
the best performance.

5.4 Time Cost
The time cost for TVUCB and TVTP on both two data sets are

displayed in Figure 6. It shows that the time costs are increased
linearly with the number of particles. In general, TVUCB is faster
than TVTP since TVTP highly depends on the sampling process.

6. CONCLUSIONS
In this paper, we take the dynamic behavior of reward into ac-

count and explicitly model the context drift as a random walk. We
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propose a method based on the particle learning to efficiently in-
fer both parameters and latent drift of the context. Integrated with
existing bandit algorithms, our model is capable of tracking the
contextual dynamics and consequently improve the performance of
personalized recommendation in terms of CTRs, which is verified
in two real applications,i.e., online advertising and news recom-
mendation.

The recommend items, e.g., advertisements or news articles, may
have some underlying relations with each other. For example, two
advertisements may belong to the same categories, or come from
business competitors, or have other same features. In the future, we
plan to consider the potential correlations among different items,
or say, arms. It is interesting to model these correlations as con-
straints, and incorporate them into the contextual bandit modeling
process. Moreover, the dynamically changing behaviors of two cor-
related arms tend to be correlated with a time lag, where the change
correlation can be interpreted as an event temporal pattern [27].
Therefore, another possible research direction is to extend our time
varying model considering the correlated change behaviors with the
time lag.
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