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Abstract. With the advent of cloud, new generations of digital services
are being conceived to respond to the ever-growing demands and expec-
tations of the market place. In parallel, automations are becoming an
essential enabler for successful management of these services. With such
importance being placed on digital services, automated management of
these services – in particular, automated incident resolution – becomes
a key issue for both the provider and the users. The challenge facing au-
tomation providers lies in variability and the frequently changing nature
of the monitoring tickets that provide the primary input to automa-
tion. Despite the value of the correct automation at the correct time, it
is also important to remember that triggering an incorrect automation
may damage the smooth operation of the business. In this paper, we dis-
cuss AI modeling for automation recommendations. We describe a wide
range of experiments which allowed us to conclude an optimal method
with respect to accuracy and speed acceptable to service providers.

Keywords: Classical and deep learning models · Combination models ·
Multiclass text classification · AI for service automation.

1 Introduction

Providing Service Management at scale requires automation. For decades, sys-
tem administrators have had scripts to automate routine repairs, and have also
employed automated monitoring systems to raise alerts when repair is called
for. While some of these alert conditions require individual expert attention,
service delivery professionals have confirmed that many of these conditions can
be handled with the execution of the correct well-written script. These scripts
are combined into automation library for IBM Automation service. The first step
in managing alert conditions is to filter and collect the alerts into the “trouble
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tickets” that act as work orders for repair. IBM service delivery teams have li-
braries of regular expressions that match ticket details to automation that may
solve the problem. These regular expressions are applied to ticket raised by mon-
itoring systems, which encode both specific fields (machine address, timestamp,
severity, etc.) and also “free text” summary information.

In the normal course of business, new monitor systems are added, either
through organic growth or by mergers and acquisitions. These new systems
will usually be generating tickets about similar issues, so existing automation
would often be appropriate for its resolution, but ticket formats may be suf-
ficiently different to not match the corresponding regular expression. Figure 1
shows an example of two different ticket problems that were detected and auto-
ticketed by the monitoring system, and subsequently successfully closed by the
same automation. Over the course of several years IBM Global Services estab-
lished around 25,000 regular expressions. This approach is very effective, but it
is difficult to maintain. To assist IBM automation services we created “match-
ing service” that utilizes artificial intelligence for choosing an automation for a
monitoring ticket with ensuring the following challenge:

How does the matcher service effectively achieve and maintain high accu-
racy on noisy tickets while automatically adapting to an introduction of a new
or changed ticket contents? Since executing an inappropriate automation on
a server may cause damage, our recommendation has to be highly accurate.
Informative, discriminating and independent features can greatly promote the
performance of classification or regression algorithms, while irrelevant features
decrease it. Unfortunately, real-world tickets (seen in Figure 1) contain various
time-format, numeric and domain-specific terms, and unknown text snippets
that make them too noisy to be interpretable. Thus, effective feature-selection [1]
often involving immense efforts on text preprocessing becomes a crucial step to
make this learning task more efficient and accurate. Feature selection is per-
formed manually for classical classification solutions [2], but the changes in
ticket style and content over time means that optimal feature-selection will also
change, leading to degraded performance. Reasonable techniques to address this
issue include the direct use of deep neural networks [3–5] without manual feature-
selection, or using convolutional neural networks as input for classical AI models
(i.e., combination models) to automatically learn a generic feature representa-
tion.

In the course of our work with service delivery teams to improve automation,
we have studied the use of Machine Learning (ML) to identify methodology that
would help us to address the tickets that were not recognized by the existing
rules. We have conducted a comparative study on a wide range of machine learn-
ing approaches including classical AI, deep learning and combination methods.
They are described in details in Section 3. We have large volume of tickets from
IBM Services which were successfully and automatically remediated, so we have
large amount of task specific labeled dataset for our experiments.

As we present in this paper, our initial solutions have performed extremely
well on the labeled test data. A significant challenge when evaluating recom-
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Fig. 1. Two different monitoring tickets and the same matching automation.

mendations, however, is that this data is all taken from the tickets that were
automated through regular expression match. When we apply these models to
tickets that did not match any of those expressions, the only way to evaluate
the recommendation is for a subject matter expert (SME) to review it. We have
done this and, as we will present here, the results are very promising.

We have incorporated these models into “matching service” for IBM service
delivery: automation service makes a call to matching service for the tickets
that do not match any of the handcrafted rules. If our system identifies a ticket
that our model strongly associates with an existing automation (for an audited
set of automations that are deemed “safe” enough to run prospectively), that
automation will be run. After it is run, the ticket condition is reevaluated, and
the ticket is either resolved automatically or escalated.

This “matching service” is part of Cognitive Event Automation (CEA) frame-
work [6] that focuses on service management optimization and automation with
the goal of transforming the service management lifecycle to deliver better busi-
ness outcomes through a data-driven and knowledge-based approach. The frame-
work relies on novel domain specific techniques in data mining and machine
learning to generate insights from operational context, among them generation
of predictive rules, deep neural ranking, hierarchical multi-armed bandit algo-
rithms, and combination models for the automation matching service that is the
focus of this paper.

This paper presents the comprehensive performance comparison on a wide
range of popular classical AI, deep learning and combination classifiers that has
guided us in model selection for an IBM automation service implementation. We
have established that under the time constraint, classical AI models perform best
when size of training data is small but with the drawback that features must
be hand-crafted. Deep learning models will also perform well when the training
data is large enough, but combination models have the best performance for
large dataset size and without a need for manual feature-engineering.

The remainder of this paper is organized as follows. An overview of the CEA
system is presented in Section 2. In Section 3, we provide the mathematical for-
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malization of the problem and methodologies. Section 4 describes a comparative
study conducted over real-world ticket data to show the performance of the pro-
posed methodologies. Finally, a systematic review of related work is presented
in Section 5, and Section 6 concludes the work and provides directions for future
research.

2 System Overview

2.1 Service Management workflow

A typical workflow for service management usually includes six steps. (1) An
anomaly is detected, causing the monitoring system to emit an event if the
anomaly persists beyond a predefined duration. (2) Events from an entire en-
vironment are consolidated in an enterprise event management system, which
makes the decision whether or not to create an alert and subsequently an inci-
dent ticket. (3) Tickets are collected by an IPC (Incident, Problem, and Change)
system [7]. (4) A monitoring ticket is identified by automation services for poten-
tial automation (i.e., scripted resolution) based on the ticket description. If the
automation does not completely resolve the issue, this ticket is then escalated
to human engineers. (5) In order to improve the performance of automation ser-
vices and reduce human effort on escalated tickets, the workflow incorporates an
enrichment system like CEA that uses Machine Learning techniques [8–10] for
continuous enhancement of automation services. Additionally, the information
is added to a knowledge base, which is used by automation services as well as in
resolution recommendation for tickets escalated to human engineers. (6) Manu-
ally created and escalated tickets are forwarded to human engineers for problem
determination, diagnosis, and resolution, which is a very labor-intensive process.

2.2 System Architecture

The microservice is a new computing paradigm that overcomes the limitations
of the monolithic architectural style. The microservice architecture consists of
a collection of loosely coupled services, each of which implements a business
function. The microservice architecture enables scalability, flexibility, and also
continuous devops (development and operations) of large, complex applications.
We use the microservices framework to support our data processing components.

Figure 2 illustrates the CEA system architecture. In general, the system con-
sists of two types of services: offline processing services build a knowledge corpus
and models; and inline processing services apply reasoning to gathered runtime
data, using the models and knowledge corpus built offline. The offline processing
services take advantage of AI that incorporates feedback loop analysis, auto-
matically re-training models periodically or on demand if the monitoring system
undergoes a significant change. The system continuously improves recommen-
dations for automated resolution of monitoring tickets. The inline system has a
number of services: Correlation and Localization Service (CLS) identifies clusters
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Fig. 2. CEA System Architecture

of symptoms attributable to a complex incident; Disambiguation of Root Causes
(DRC) is built as a recommender system that enriches ticket data with possible
root causes, identifies steps necessary for full diagnosis and provides optimal se-
quence of diagnostics and remediation steps using AI planning service. Finally,
the ticket-automation matching service provides a service to identify the correct
automation for a given ticket. The model built in this work allows the system to
trigger the correct automation, despite the challenge of external influences that
change ticket content and style over time.

3 Problem Definition & Methodology

In this section, we provide a mathematical formulation of the service automation
modeling problem, followed by the description of proposed methodologies.

Based on a ticket’s content, finding the best automation can be intuitively
viewed as a multiclass text classification problem. A general framework for sta-
tistical learning (in particular for supervised learning) is as follows: a set of
labeled training data D = {(xt, yt)}Nt=1 is drawn independently according to a
distribution P (x, y) on (Rd, Y ), where x, xt ∈ Rd, y, yt ∈ Y = {1, 2, · · · ,K} is
the ground truth class label for xt. For example, a ticket (seen in Figure 1) can
be represented by a set of features x using NLP techniques [11] and a known
class label y = {Disk Path Checker}. We assume that g(x) : Rd 7→ Y be a
prediction function.

A loss function ` : Y × Y 7→ R, usually a positive function, measures error
between prediction and actual outcomes. Cross entropy loss (log loss), mean
absolute error (L1 loss), and mean squared error (L2 loss) are three popular
loss functions that calculate the error in different ways. Expectation L of ` by
measure P is called expected loss:

L(g) = E(x,y)∼P [`(g(x), y)].

The prediction function g is usually found from minimization of expected loss
L:

g = arg min
g

L(g). (1)
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Sometimes we choose g from a family of functions g(Θ), where Θ is a set of
parameters. Equation 1 in this case becomes Θ∗ = arg minΘ L(g(Θ)).

Let p(k|x) = P (Y = k|X = x) be the conditional probability of getting label
k given X = x, k = 1, . . . ,K. For equal misclassification costs the loss function
`(y, g(x)) = χ(y 6= g(x)), with χ being indicator function of the set {y 6= g(x)}.
Then the best classification (Bayes) rule minimizes expected misclassification

gB(x) = arg min
k=1,...,K

[1− p(k|x)] = arg max
k=1,...,K

p(k|x).

In order to solve the real-world challenge, we have conducted a comparative
study on a wide range of machine learning approaches including classical AI, deep
learning and combination methods. Figure 3 shows an overview of how different
models are used to address multiclass text classification problem. In order to use
classical AI models for this classification task, a feature extraction step must first
transform the raw text data into informative feature vectors. In comparison, deep
learning models can automatically perform feature engineering and classification
tasks. Combination models unite the broad applicability of classical AI models
with the automatic feature engineering of deep learning models to improve the
performance. As background for the experimental design of Section 4, we will
first outline a few classical AI learning algorithms, like support vector machines,
ensemble methods, and deep learning approaches.

DEEP LEARNING 
MODELS

PREDICTED
CLASSIFICATION

TEXT
DATA

CLASSICAL
AI 

MODELS

COMBINATION MODELING

DEEP
LEARNING 
MODELS

LEARNED
FEATURES
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EXTRACTION FEATURES

CLASSICAL
AI 
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CLASSICAL MODELING

DEEP LEARNING MODELING

Fig. 3. Using modeling for the multiclass text classification: classical AI vs deep learn-
ing vs combination.

3.1 Classical AI: Support Vector Machines

Support Vector Machines (SVMs) are often considered as an efficient, theoret-
ically solid and strong baseline for text classification problems [2]. SVMs were
designed for binary classification. There are two main approaches for multi-
class classification: one-vs.-all classifiers (OVA) [12] and multiclass SVMs [13].
One-vs.-all classifications simply construct K SVMs, where K is the number of
classes, training k-th SVM with all of the training examples in the k-th class
with positive labels, and all other examples with negative labels. In other words,
the k-th SVM tries to find a hyperplane that satisfies the following constrained
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optimization problem:

min
ωk,bk,ξk

1

2
(ωk)T (ωk) + C

N∑
t=1

ξkt ,

subject to:
(ωk)Tφ(xt) + bk ≥ 1− ξkt , if yt = k,

(ωk)Tφ(xt) + bk ≤ −1 + ξkt , if yt 6= k,

ξkt ≥ 0, t = 1, 2, · · · , n,
where ω is the weight vector, b is the intercept of the hyperplane, φ(•) is the
function mapping the feature vector xt to a higher dimensional space and C is
the penalty parameter. For a new text x, the predicted ŷ can be calculated as
follows:

ŷ = arg max
k=1,2,··· ,K

((ωk)Tφ(x) + bk).

3.2 Classical AI: Ensemble Methods

Ensemble methods [14] are learning algorithms that train multiple classifiers, and
then typically apply voting (weighted or unweighted) to make predictions for new
data. It is well known that an ensemble method is generally more accurate than
any single classifier. Useful categories of ensemble methods include Bagging and
Boosting. In this review, we are considering Random Forests as an example of
Bagging, and eXtreme Gradient Boosting as the one of Boosting.

Random Forests [15–17] is a highly accurate and robust machine learning
algorithm, capable of modeling large feature spaces. A random forests is an
ensemble of H decision trees {f1, f2, · · · , fH}, with each tree grown by randomly
subsampling with replacement of the entire forest training set D = {(xt, yt)}Nt=1,
xt ∈ Rd, and yt ∈ {1, 2, · · · ,K}.

There are two types of nodes in a binary decision tree [18]. The leaf nodes
of each tree are the estimates of posterior distribution pk for all classes. Each
internal node (i.e., split node) is associated with a test function Θ that best splits
the space of training data. Often, Gini-impurity is used to choose the best test
function Θ∗. During the training, each tree selects appropriate test functions and
labels leaf node probabilities. For the evaluation, a test sample x is propagated
through each tree leading to a classification probability pt(k|x) of the t-th tree.
A forest’s joint probability can be represented as follows:

p(k|x) =
1

H

H∑
h=1

ph(k|x)

Therefore, given x, the predicted class ŷ is:

arg max
k=1,2,··· ,K

p(k|x)
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eXtreme Gradient Boosting [19] has been widely recognized in many ma-
chine learning and data mining challenges and provided state-of-art results on
many standard classification benchmarks. It is a tree ensemble model based on
Gradient Boosting Machine and a set of Classification and Regression Trees
(CARTs). Similar to RF, the final output is the sum of prediction of each tree
with the given dataset D.

ŷ =

H∑
h=1

fh(x), fh ∈ F ,

where K is the number of trees, F is the space of all possible CARTs, and f is an
additive function in the functional-sapce F . In order to learn the set of functions
in the model, the objective function with a regulation term can be written as:

L =

N∑
t=1

l(yt, ŷt) +

H∑
h=1

Ω(fh). (2)

The loss function l(•) measures the difference between the target yt and
the prediction ŷt. The regularization function Ω(•) penalizes the complexity of
the model to avoid overfitting. Since the tree ensemble model including these
functions (See Equation (2)) cannot be easily solved by traditional optimization
methods, XGboost is trained in an additive manner. For the multiclass classifi-
cation problem, we construct K binary classifiers using XGBoost model [20] and
subsequently apply OvA.

3.3 Deep Learning: Convolutional Neural Networks

In recent years, deep neural networks have brought about a striking revolution
in computer vision, speech recognition and natural language processing.

Convolutional neural networks (CNNs), one of the most promising deep learn-
ing network methods, has achieved remarkable results in computer vision. It also
has been shown to be effective in many NLP tasks, such as text categorization,
spam detection, and sentiment analysis [4]. CNN performs well feature extrac-
tion and classification tasks without any preconfiguration (i.e., without selecting
features manually).

For an m-word input text (padded where necessary) st = {w1, w2, · · · , wm}
with a label yt, t = 1, 2, · · · , n, and yt ∈ {1, 2, · · · ,K}, each word is embedded as
a q-dimensional vector, i.e., word vectors w1, · · ·wm ∈ Rq. The m×q representa-
tion matrix is fed into a convolutional layer with a filter α ∈ Rl×q sliding over the
text to produce a feature map. Let wi:i+l−1 denotes the concatenation of words
wi, wi+1, · · · , wi+l−1 with a length l. A convolution feature is calculated as fol-
lows. ci = f(α ·wi:i+l−1 +β), where β ∈ R ia a bias term and f(•) is a non-linear
function. This filter α slides over the text {w1:l, w2:l+1, · · · , wm−l+1:m} resulting
in a convolution feature map cα = [c1, c2, · · · , cm−l+1]. A maxpooling layer is
followed to capture the most important feature ĉα = max{c} as the feature cor-
responding to the particular filter α. In practice, numerous filters with varying
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window sizes are used to obtain multiple convolution features. Extracted features
are passed to a fully connected softmax layer, whose output is the probability
distribution over classification classes o = {o1, o2, · · · , oK}. The predicted class
is

ŷ = arg max
k=1,2,··· ,K

{o}.

To avoid overfitting, dropout is employed.
In order to learn the parameters in this model, the objective loss function for

mutlclass text classification is needed to be defined. Herein, we use the cross-
entropy loss function:

min
Θ
− 1

N

N∑
t=1

K∑
k=1

yt,k log(pt,k),

where Θ denotes the parameters of the CNN model, yt,k is a binary indicator
if class k is the correct classification for the t-th text, and pt,k is the predicted
probability of text t is of class k through a softmax activation.

pt,k =
exp(g(st; θk))∑K
k=1 exp((g(st; θk))

,

K∑
k=1

pt,k = 1.

3.4 Combination Models

Figure 4 shows the overall architecture of combination models for multiclass
text classification tasks. CNN is used for learning feature representation in many
applications. Convolution feature filters with varying widths can capture several
different semantic classes of n-grams by using different activation patterns [4]. A
global maxpooling function induces behavior that separates important n-grams
from the rest. We propose a combination model that replaces the softmax layer of
CNN with classical AI models for multiclass text classification problems. In this
model CNNs perform as an automatic feature extractor to produce the learned
(i.e., not hand-crafted) feature vectors from large text data. These feature vectors
used in the classical classification models to provide more precise and efficient
classification performance [21].

When comparing methods, it is important to remember the preprocessing and
feature extraction effort. The classical methods in Subsection 3.1 and 3.2 require
considerable effort for text preprocessing and feature extraction [5]. Ensemble
methods also require either automatic feature extractors or manual selectors to
transform the raw data into suitable internal feature vectors for further pat-
tern recognition and classification [22]. These additional steps are not required
for deep learning and combination models. Ability to evade preprocessing steps
constitutes an important differentiation from classical methods.

4 Experiments

Executing an incorrect automation is potentially harmful to the service, so a
classifier’s recommendation has to be highly accurate.
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Fig. 4. Architecture of combination models on multiclass text classification tasks.

4.1 Dataset and Experimental Setup

Experimental ticket data is generated by a variety of monitoring systems and
stored in the Operational Data Lake. This dataset contains |D| = 100, 000 tickets
from Jan. 2019 to Apr. 2019, of which 80% is the training dataset, while the
remaining are used for validation. There are 114 scripted automations (i.e., 114
classes/labels) in the dataset and a vocabulary V of size |V | = 184, 936. To ensure
validity of training, our ground truth dataset contains only tickets for which an
automation was not only selected, but it also run and successfully resolved the
ticket. Ticket information together with the automation name associated with
the ticket constitutes the labeled dataset for training and testing.

The first step of preparing input data for the classical AI classifiers uses
the bag of words method to represent feature vectors of each ticket after text
preprocessing (stemming, lemmatization, stop words removal, etc.). Classical AI
models usually work with relatively low-dimension attribute spaces, necessitating
well-defined and highly informative attributes as coordinates of feature vectors.
We use domain experts’ assistance to determine such attributes for the dataset.

It is common to initialize deep learning models for NLP by using pre-trained
word embeddings. This practice reduces the number of parameters that a neural
network needs to discover from scratch. For the deep learning and combination
models, it is a prevalent method to initialize pre-trained word vectors from an
unsupervised neural language model to improve performance.

A weakness of this method lies with its ability to handle unknown or out-of-
vocabulary (OOV) words. Our dataset (see Figure 1) contains critical domain
specific information such as various machine address, domain-specific terms, and
unknown technical script snippets for which there are no pre-trained data. A mul-
tilayer perceptron (MLP) is a deep artificial neural network composed of input
layer, output layer and some number of hidden layers in between. In our case
the layers are word embedding layer, fully connected layer and dropout
layer. The introduction of a dropout layer is a regularization technique that re-
duces overfitting. CNN has an additional convolutional layer. Rectified Linear
Unit (ReLU) is a commonly used activation function in deep learning models.

After some preliminary testing, we designed our primary experiments to ran-
domly initialize all word vectors with a dimension of 300. We use filter size of
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4, 5 with 64 feature maps each (for CNN only), dropout rate of 0.25, mini-batch
size of 128, and epoch number of 20.

4.2 Evaluation Metrics

The accuracy (ACC) and F1-score (F1) are widely applied metrics for evaluating
multiclass classifiers. We provide expression for the evaluation metrics in terms
of Section 3, the problem definition, where D = {(xt, yt)}Nt=1, yt is one of K
classes, and g(•) is the classifier. Multiclass accuracy is defined as an average
number of correct predictions: ACC = P(x,y)∼D[g(x) = y]. F1-score for 2 classes
of outcome (0, 1), is the harmonic mean of precision and recall

F1 = (
1

2
(

1

precison
+

1

recall
))−1 =

2C1,1

C1,1 + C0,1 + C1,1 + C1,0
, (3)

where Ci,j is a confusion matrix.
There are multiple ways to generalize Formula (3) to a multiclass F1-score.

Macro-averaged F1-score (F1-macro), which emphasizes each class equally, has
been demonstrated to be unbiased and provides an effective performance measure
in multiclass settings [23]. For a classifier g, its (multiclass) confusion matrix
C[g] ∈ [0, 1]K×K is defined as Cij [g] = P (y = i, g(x) = j). Macro-averaged
F1-score in terms of the confusion matrix can be written as:

F1macro[g] =
1

K

K∑
i=1

2× Cii[g]∑K
j=1 Cij [g] +

∑K
j=1 Cji[g]

.

4.3 Results and Discussions

A wide range of strong classifiers across supervised, unsupervised, deep and com-
bination AI models are evaluated for their performance on a real-world multiclass
classification task. To ensure the fairness of comparisons, the accuracy and F1
score for each model are calculated from the average results of 5-fold cross vali-
dation (CV). The comparison of performance of ACC, F1-macro and time cost
has been shown in Table 1, where time cost is defined as the time required to
train a good model on the dataset once for each model. The parameters in XG-
Boost are learning rate is 0.1, number of estimators is 100, booster is gradient
boosting tree, and maximum depth is 4. For Random Forests, the number of
estimators is 100 as well. All algorithms are implemented using Python 1.8. All
empirical experiments are running on MacOS 10.14 with CPU only.

These results demonstrate that classical classification models such as SVM,
Random Forests, and XGBoost have best performance on small datasets, but
need handcrafted features. The training time for SVM increases exponentially
with data size, while those of Random Forest and XGBoost increase linearly.
Clearly, XGBoost has the best accuracy and F1-macro scores on the 4k dataset
from Table 1.
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Table 1. Performance comparison on Accuracy (ACC(in percent %)), F1-macro
(F1(in percent %)), Time Cost (t(in seconds)).

|D| = 4, 000 |D| = 20, 000 |D| = 100, 000

Models ACC(%) F1(%) t(s) ACC(%) F1(%) t(s) ACC(%) F1(%) t(s)

Linear SVM [24] 97.95 88.18 3.60 99.09 92.42 42.81 99.53 93.69 671.97
Decision Tree [25] 97.65 84.71 0.11 98.58 79.96 1.13 98.15 62.74 16.43
KNeighbors [26] 93.75 75.20 0.15 97.39 78.01 3.72 97.80 80.46 99.29
K-Means [27] < 50.00 – 78.01 < 50.00 – 625.13 < 50.00 – 5960.72
Random Forests [15] 97.65 89.26 1.15 99.05 92.28 13.25 99.29 93.39 251.26
XGBoost [19] 98.50 91.79 122.06 99.22 89.97 814.90 99.12 79.85 5345.62

MLP [3] 96.37 82.78 2.62 98.85 88.79 18.38 99.23 93.72 251.35
CNN [4] 97.12 81.10 8.65 98.92 88.40 52.87 99.39 93.16 601.11

CNN-SVM [21] 98.77 87.46 145.13 99.48 92.54 403.25 99.79 96.07 3019.69
CNN-Random Forests 98.75 87.92 148.24 99.54 90.01 148.24 99.80 95.90 1939.16
CNN-XGBoost [28] 93.50 67.41 260.19 97.70 72.15 1804.07 98.75 82.53 14035.91

Deep learning models perform better when the dataset is large, with the
additional benefits that the models have a relatively short training time, and do
not require feature engineering. Between deep learning models, CNN required
more training time than MLP. And this can be attributed to the larger number
of its parameters to learn.

Combination models have no need for handcrafted features, which allows
them to support evolving sets of ticket templates and styles without the direct
intervention of experts. Most of the combination models considered, CNN-SVM
and CNN-Random Forests have better accuracy and F1-macro scores than SVM
and Random Forests. This confirms that CNN models are good at automatically
learning feature representation from a text data. CNN-Random Forest has the
best overall performance among all the models including training time on a large
dataset.

To summarize, we have explored a wide range of AI models and conducted
a comparative study on our real-life data, aiming to provide guidance for model
selection. While we find that all methods perform fairly well on different size
datasets, the following insights have been learned from the experimental results:

1. Classical AI models perform well when the data size is small but they require
handcrafted features.

2. Deep learning models achieve a better performance when the training data
is large enough without feature engineerinng.

3. Combination models have the best performance on large dataset with no
requirement for engineered features.

5 Related Work

The automation of service management [29] is largely achieved through the au-
tomation of subroutine procedures. Automated ticket resolution recommenda-
tion presents a significant challenge in service management due to the variability



Leveraging AI in Service Automation Modeling 13

of services, and the frequently changing styles and formats for monitoring tickets
that provide an input to automation.

Traditional recommendation technologies in service management focus on
recommending the proper resolutions to a ticket reported by the system’s user.
Recently, Wang et al. [30] proposed a cognitive framework that enables automa-
tion improvements through resolution recommendations utilizing the ontology
modeling technique. A deep neural network ranking model [31] was employed
to recommend the best top-n matching resolutions by quantifying the qualify of
each historical resolution. In [8, 32], the authors leverage a popular reinforcement
learning model (specifically, the multi-armed bandit model [9, 33]) to optimize
online automation through feedback in automation services.

Text classification, including binary text classification (e.g., sentiment clas-
sification and spam detection) and multiclass text classification are the funda-
mental tasks of Natural Language Processing [34]. The aim of text classification
is to assign binary classes or multiple classes m > 2 to the input text. Tradi-
tional approaches of text classification directly use sparse lexical features, such
as bag of words model [35] or n-gram language model [36] to represent each doc-
ument, and then apply a linear or nonlinear method to classify the inputs. Many
machine learning techniques have been developed for the multiclass text classifi-
cation problem, such as Support Vector Machines (SVM), K-Nearest Neighbors
(KNN) and ensemble methods (XGBoost and Random Forests). Most recently,
deep learning models have achieved remarkable success in learning document
representation from large-scale data. Convolutional neural network (CNN) [4]
approach is a very effective to feature extraction, and long short-term memory
(LSTM) [37] is powerful in modeling units in sequence. In [28, 21], CNN-XGBoost
and CNN-SVM models are used to improve the performance of image classifi-
cation. We work with raw text data and use CNN in combination models for
feature engineering.

Additional related work is provided in line with descriptions of relevant meth-
ods in Section 3.

6 Conclusion and Future Work

This paper addresses the automated management of digital services, more specif-
ically an automated resolution of incidents. In the present context of an explosion
of AI methods of multiple generations, it is important to choose optimal per-
forming methods when implementing production systems.

In this paper we evaluate the performance of the three main types of the
AI models: classical, deep learning and combination. Classical models include
regular and ensemble methods. From a vast variety of existing methods, we have
chosen those that are most promising in their class. For each model used, we
have provided a short description and outlined its benefits and disadvantages.

We run wide range of experiments on real life data to find optimal model-
ing with respect to a number of metrics: accuracy, F1-macro score (measuring
precision to recall ratio), running time and necessity of by-hand processing.
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Our experimental results clearly show that under the time constraint, clas-
sical AI models perform best when the size of training data is small, and the
combination methods are the best performing methods on large datasets of our
data and they have no requirement for manual feature engineering. Following
this conclusion, a Ticket Automation Matching Service has being implemented
for the IBM Services production system.

For future work, we would like to employ the deep reinforcement learning
method [22], transforming the backend offline model to an online one. Another
important direction will be to build combination services that incorporate both
deep learning and classical system together with common optimization problem
and find global optimal parameters of the model.
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