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Abstract—With the promise of reliability in cloud, more en-
terprises are migrating to cloud. The process of continuous
integration/deployment (CICD) in cloud connects developers who
need to deliver value faster and more transparently with site
reliability engineers (SREs) who need to manage applications
reliably. SREs feed back development issues to developers, and
developers commit fixes and trigger CICD to redeploy. The release
cycle is more continuous than ever, thus the code to production
is faster and more automated. To provide this higher level agility,
the cloud platforms become more complex in the face of flexibility
with deeper layers of virtualization. However, reliability does not
come for free with all these complexities. Software engineers
and SREs need to deal with wider information spectrum from
virtualized layers. Therefore, providing correlated information
with true positive evidences is critical to identify the root cause of
issues quickly in order to reduce mean time to recover (MTTR),
performance metrics for SREs. Similarity, knowledge, or statistics
driven approaches have been effective, but with increasing data
volume and types, an individual approach is limited to correlate
semantic relations of different data sources. In this paper, we
introduce FIXME to enhance software reliability with hybrid
diagnosis approaches for enterprises. Our evaluation results show
using hybrid diagnosis approach is about 17% better in precision.
The results are helpful for both practitioners and researchers to
develop hybrid diagnosis in the highly dynamic cloud environment.

Index Terms—event management, hybrid system, event correla-
tion, localization, cloud

I. INTRODUCTION

With the promise of reliability, cloud has become more flex-
ible and dynamic to provide continuous software development
and deployment. While the contemporary microservices archi-
tecture has simplified the scope of software developers through
well defined representational state transfer application program-
ming interfaces (REST APIs), roles of site reliability engineers
(SREs) towards availability, latency, performance, efficiency,
change management, monitoring, emergency response, and ca-
pacity planning have become even more complex. Container
deployments are more dynamic than ever, with lifespans of 10
seconds or less becoming increasingly prevalent, emphasizing
the need for real-time visibility that delivers detailed audit and
forensics records [1]. The ephemeral and immutable nature
of containers is advantageous for development and operations
(DevOps), but simultaneously can be challenging for software
developers and SREs to correctly diagnose incidents and resolve
them timely. Based on 2020 SRE report, 80% of SREs work
on post-mortem analysis of incidents due to lack of provided
information and 16% of toil come from investigating false
positives/negatives [2, 3].

As shown in Figure 1, cloud has adopted more virtualization
technologies, in turn virtualized layers stack up to run appli-
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Fig. 1: Evolution of server and network virtualization

cations and the number of applications running in one node
increases. This also means that any virtualized layer below
applications can have direct impact on running applications.
This increased scope of application impact is not only derived
from server virtualization, but also from network virtualization.
A microservices architecture has driven this as the number
of containers is more than the same type of a monolithic
application. That is, more information such as logs, alerts,
metrics are generated, thus consolidating these information in
a meaningful way becomes intractable. As noted in [2]−41%
of SREs have answered half or more of their work is toil−,
when dealing with the high amounts of toil in an organization,
the underlying reasons are lack of intelligence and automa-
tion. To cope with this hardship, artificial intelligence for IT
operations (AIOps) has emerged to help SREs to recognize
serious issues faster and with greater accuracy than humans.
The ultimate objective of AIOps is to minimize mean time to
recover (MTTR) by providing software engineers and SREs
with localized and correlated information. MTTR spans dif-
ferent stages including mean-time-to-detect (MTTD), -identify
(MTTI), -know (MTTK), -repair (MTTRepair), and -resolve
(MTTResolve). From the large amount of data, the problem
determination and information correlation are the keys to start
with the right problem and correct information. Not to mention
that this reduces the number of false positives/negatives.

From various data sources such as logs, alerts, metrics,
anomaly events, and the like, the premise of information consol-
idation is that information have some common elements to each
other, appear within a time window, and occur in a proximity
of location. The two main bodies of research include event cor-
relation [4] and problem localization [5, 6]. In large, similarity-
based, knowledge-based, and statistical approaches have been
used to identify patterns and groups, filter and prioritize the
events [4, 5] for both pre-mortem and post-mortem analysis.
However, in AIOps, not one approach can always perform better
than others because it is extremely hard to identify underlying
patterns of different data sources of all levels and also generalize



knowledge obtained from one application to another. In practice,
a hybrid or ensemble approach would usually result in better
correlation results [7, 8, 9].

In this paper, we introduce hybrid methodologies for AIOps
used in production, and evaluate how they improve problem
determination and information correlation. Our contributions
include the following:
• Explore various data sources in cloud native environment

and their normalization,
• Find patterns defined by complex predicates in large, con-

stantly changing datasets,
• Introduce hybrid diagnosis approaches for entity resolution

and event correlation,
• Incorporate continuous learning with feedback, and
• Evaluate the hybrid diagnosis approaches and the impact of

the continuous learning.

II. BACKGROUND AND CHALLENGES

Monitoring system is an automated system that provides
an effective and reliable means of ensuring that anomalous
behavior or degradation of the vital signs of hybrid application is
flagged as a problem candidate (monitoring event) and sent for
diagnosis and resolution. Events from hybrid environment are
consolidated in an enterprise event management system (EM).
EM often incorporates rules that define whether to create an
incident record (ticket) for IT problem reporting. In some cases,
SREs analyze incoming events or symptoms before deciding on
creating a ticket. Tickets are collected by Incident, Problem,
and Change (IPC) system. Independently, the information is
also collected by myriad of tools that ingest data from various
sources and provide events of their own.

Operations or SREs perform problem determination, diag-
nosis, and resolution based on the symptoms information in
the ticket. In the interviews conducted with SREs, they have
identified diagnosis as the most difficult task. The majority of
SREs have pointed out that given right diagnosis, they would
be able quickly to derive actions required to resolve the issue.
Being able to troubleshoot a problem and to arrive to a diagnosis
is often considered to be an innate skill [10]. Problem determi-
nation is a labor-intensive process, and Operations/SREs use any
help they could get from analytics. There has been a great deal
of effort spent on developing methodologies for specifying and
reasoning about symptoms/signals provided through monitoring
of systems, be they hardware or software.

While there is large body of techniques in existence, each
technique is usually focused on a single type of data (events or
log anomalies or metric analysis). Lately, a number of service
providers have embarked on extending their existing analytics to
other data types. The benefit of this approach is shortening time
to market through adaptation of well-researched capabilities;
one obvious drawback is that performance of any methodology
is optimized for specific data, and it does not perform as well on
different data types. In this paper we present in-depth review of
the operational data types and combinations of algorithms for
working with each data type to achieve a goal of identifying a
group of symptoms with a common root cause and localizing
the problem.

Although the methodology we describe is successfully used
for identification and linkage of symptoms from variety of

data sources, we are not able to adjust for some changes in
the architecture and monitoring strategy. It is imperative to
continue improving the models through continuous learning
and feedback. We point out that in our experience, SREs do
not tend to provide an extensive feedback and more often
than not their feedback is limited to thumbs-up/thumbs-down
response. Learning from this feedback is a challenge if the
insight that they assess is complex. For example, a negative
feedback received for a grouping of symptoms is missing critical
information about which signals do not belong to the group.
In this paper we describe an approach to using their minimal
feedback efficiently.

It is a widely accepted fact today that operational data poses
additional challenges in comparison to social data for example.
In this paper we describe various data types used in operations
and challenges associated with it. To name a few, some IT
data is often created using templates by different developers,
so the content of data of the same type could vary drastically;
data that represents a symptom of a problem only makes sense
in the context of system/application configuration or resource,
however this critical information is often embedded in the text
and not provided as first class item.

III. RELATED WORK

The main body of related researches is information (events
or alerts) correlation. Prior arts for information correlation
are categorized into similarity based, knowledge based and
statistical approaches. The similarity-based event correlation
works on the premise that two events that have similar root
causes should be grouped together. The base logic is to compute
similarity between the feature spaces of data and measure
the score [11, 12, 13]. For example, a weighted sum of
feature similarity of two data points is used to measure the
score [14, 15]. One of the most popular similarity based methods
is clustering. The clustering divides data into a number of groups
such that data in the same group are more similar than other
data in other groups. Klaus [16] proposes an alert clustering
approach for identification of root causes that trigger the alert.
Vaarandi [17] clusters for log event data which helps one to
detect frequent patterns from logs, to build log profiles, and to
identify anomalous logs.

Experience based knowledge often becomes the source of
intelligence or automation, which can be turned into rules,
templates, or scenarios. Kabiri et. al. [18] propose a rule-based
temporal alert correlation system that uses an inference engine
to aggregate redundant alerts and derive correlation between
alerts using a scenario-based knowledge base. Klaus [19] mines
rules by learning from previous events, and use these rules to
cluster the new incoming events as they occur. Dain et. al. [20]
map each incoming event to one of the manually prepared
predefined scenarios or patterns, where each scenario represents
a sequence of actions. Another type of the knowledge based
approach is expert systems. The expert systems aim at reproduc-
ing the performance of a human expert. The approaches under
expert systems constitute building a simulator that generates
alerts [21, 22] or learns alert scenarios [23, 24, 25, 26, 27, 28]
on software applications to simulate the various faults, further
models are proposed for an event correlator [29, 30, 31] that
correlates related events.
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Statistical traits find latent characteristics of data and join
them in meaningful ways towards the objective. Many prior
arts use machine learning algorithms to find patterns of data
points and the repetition patterns [32, 33, 34, 35, 36]. Among
them, Dain et. al. [37] mine scenarios from historical events,
and classify each incoming event into one of the candidate
scenarios using probabilistic methods. Smith et. al. [32, 33]
use a hierarchical unsupervised machine learning structure to
identify the first and second levels of groups that bubble up.
They also use an auto-encoder to learn the event distribution,
and to correlate events together. Pietraszek et. al. [34, 38]
propose an ensemble approach to use various machine learning
algorithms such as support vector machines, decision trees
and naı̈ve bayes to suppress false positives. Peter et. al. [36]
define activation patterns that store information in an associative
network graph and perform a graph analysis to find common
patterns based on nominal and distance based features.

To the best of our knowledge, we are the first to investigate
the hybrid diagnosis system that spans all of similarity based,
knowledge based, and statistical approaches for entity resolution
and event correlation.

IV. DATA

As a rule of thumb to build AI systems, results can only be
as good as quality of data. Understanding types of data and
guaranteeing data quality are the first steps towards a better AI
system. This section defines terminologies and discusses details
about input data.

A. Terminology

An event indicates that something of note has happened and
is associated with one or more applications, services, or other
managed resources. For instance, a container has moved to
new node, column added to a DB table, a new version of an
application is deployed, or memory or CPU exhausted. One or
more events can turn into any form of alerts or anomalies based
on the deviation from what is defined as standard, normal or
expected. Anomaly detection (a.k.a. outlier analysis) is a step
in data mining that identifies events and/or observations that
deviate from a dataset’s normal behavior. Anomalous data can
indicate critical incidents, such as a technical glitch, or potential
opportunities, for instance a change in consumer behavior.

An alert is a record (type) of an event indicating a (fault)
condition in the managed environment. It requires or will require
in the future, human or automatic attention and actions toward
remediation. For instance, disk drive failure or network link
down could be alerts.

An incident represents a reduction in the quality of a business
application or service. It is driven by one or more alerts.
Incidents require prompt attention. For instance, application
unresponsive or storage array inaccessible could be serious
outages.

A ticket is an actionable or incident embodied in a service
desk tool, where the client has decided to use one.

A change record is a description of a change that should
be deployed, including configuration changes, code changes,
security updates, and so on.

B. Logs / Metrics

Logs and metrics are two fundamental data sources generated
from every level of components as shown in Figure 1. A
log is an event happened and a metric is a measurement of
the health of a system. In general, logs include informational,
debug, warning, error, and critical depending on the severity. In
production systems, only warning, error and critical logs may
be collected. In each log line, details about the event such as a
resource that was accessed, who accessed it, and the time are
included. Each log is meant to have different sets of data in the
message so that the problem localization can be obvious.

While logs are about a specific event, metrics are a mea-
surement at a point in time. Each metric data point can have
value, timestamp, and identifier of what that value applies to
(like a source or a tag). While logs may be collected any time
an event takes place, metrics are typically collected at fixed-
time intervals, thus called a time-series metric. A sudden rise
and spike of CPU or memory utilization render alerts. However,
without logs, it is hard to understand what causes such spikes.
Therefore, bringing together both logs and metrics can provide
much more clarity. During spikes, there may be some unusual
log entries indicating the specific event that caused the spike.

From logs and metrics, SREs look for important signals that
can lead to the problem diagnosis and potentially resolution.
Broadly, four golden signals1 are known as the most helpful
signals (events):
Latency: Latency is the time it takes to service a request. While
latency can be captured for both successful requests and failed
requests, it is important to differentiate between them. The failed
requests may increase the overall latency, but this may not
necessarily be the latency of the system. At the same time,
a slow error is even worse than a fast error, so it is important to
track error latency, as opposed to just filtering out errors. Your
operations team has the most control over server-side latency,
but client-side latency will be more relevant to your customers.
Traffic: Traffic is a measure of demand for the system, measured
in a high-level system-specific metric. For instance, too many
HTTP requests to a web server or API may result in additional
stress on the system, triggering downstream effects. The traffic
signal helps differentiate capacity problems from improper
system configurations that can cause problems even during low
traffic. For distributed systems, it can also help plan capacity
ahead to meet upcoming demand.
Errors: This is the rate of requests that fail, either explicitly
(e.g., HTTP 500s), implicitly (e.g., an HTTP 200 success
response, but coupled with the wrong content), or by policy
(e.g., service level objective (SLO)). It is useful to diagnose
misconfigurations in your infrastructure, bugs in your applica-
tion code, or broken dependencies.
Saturation: Saturation is the load on the system resources (e.g.,
CPU utilization, memory usage, disk capacity, and operations
per second). Note that many systems degrade in performance
before they achieve 100% utilization, so having a utilization
target is essential. Understanding every resource has a limit
after which performance will degrade or become unavailable
is important to tackle performance issues. While parts of the

1 https://landing.google.com/sre/sre-book/chapters/
monitoring-distributed-systems
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Fig. 2: Alerts over 1 year with severities for a production application

system become saturated first, often, these metrics are leading
indicators, so capacity can be adjusted before performance
degrades.

C. Events / Alerts

While the main sources of operational data are metrics and
logs (§IV-B), based on the rules or algorithms, they become
events. Other artifacts such as configuration, security, code
changes, and the like can be sources of events. Anomalous—
also, based on rules or algorithms—events become alerts. As
shown in Figure 1, every component in virtualized layers can
produce events and parts of them can become alerts (i.e.,
important error signals). In often cases, not a single alert can
tell what went wrong exactly, so correlating information with
patterns would likely lead to better diagnosis. For example, a
spike in error rate could indicate the failure of a database or
network outage. Also, following a code deployment, it could
indicate bugs in the code that somehow survived testing or only
surfaced in the production environment.

As an example, Figure 2 shows 1 year worth of alerts (only
escalated events) generated from one production application that
is composed of 26 microservices running on Kubernetes clus-
ters. The alerts include 10,399 (75.79%) critical, 367 (2.68%)
error, 3 (0.02%) warning, and 2,951 (21.51%) info. alerts.

D. Incidents / Change Records

A manually or automatically created incident serves as a
formal record to log all the information relevant to an issue and
resolution. An incident record typically captures the informa-
tion like: id, title, description, opened date, severity, impacted
configuration item(s), outage start time, outage end time, state
(resolved, open), resolution description, change ID to represent
the incident has been “caused by change”. A change record
captures key attributes for a change like: id, title, description,
purpose, environment, request date, start date, end date, team,
state (open, closed), closure code (successful, failed, induced
issues), backout plan, close notes, configuration items for re-
sources or images associated with the change ticket. Incidents
and change records are often used to predictively measure the
potential risk of the submitted change (not yet deployed) or
reactively find which images have been problematic.

Any changes—for instance, performed to add new features,
address vulnerabilities or improve the performance of the
system—can also induce alerts/incidents. Any changes to the
software are generally made by modifying the source code,
rebuilding the images and redeploying the newer version of the
images to containers (§IV-E). So, when an alert or group of
alerts is produced on any component of the virtualized layer,

Type Category Relationships

Node Type

application, backplane, bridge, card, chassis, com-
mand, component, container, cpu, database, direc-
tory, disk, emailaddress, event, fan, file, firewall,
fqdn, group, host, hsrp, hub, ipaddress, loadbal-
ancer, location, networkaddress, networkinterface,
operatingsystem, organization, path, person, pro-
cess, product, psu, router, rsm, sector, server, ser-
vice, serviceaccesspoint, slackchannel, snmpsys-
tem, status, storage, subnet, switch, tcpudpport,
variable, vlan, volume, vpn, vfr

Edge Aggregation contains, federates, members

Edge Association

aliasOf, assignedTo, attachedTo, classifies, config-
ures, deployedTo, exposes, has, implements, locate-
dAt, manages, monitors, movedTo, origin, owns,
rates, resolvesTo, realizes, segregates, uses

Edge Data flow

accessedVia, bindsTo, communicatesWith, con-
nectedTo, downlinkTo, reachableVia, receives,
routes, routesVia, loadBalances, resolved, resolves,
sends, traverses, uplinkTo

Edge Dependency dependsOn, runsOn
Edge metaData metadataFor

TABLE I: Entity and edge semantic relationships in topology service

checking for recent changes deployed on the component can
help in the root cause analysis.

Observer tools to monitor the CICD pipeline can help link
changes directly to the DevOps workflow, but in absence of such
a mechanism, we will have to extract references to image names
from the change tickets. While in some cases, information about
the image(s) deployed by change can be mentioned in structured
fields of the change ticket, in most cases the reference to images
is hidden in the unstructured text fields. We map change tickets
to topology objects by mining the references to image names
from the change text. We first look for direct mentions of image
names in the change tickets. If direct mentions are not identified
then we search for reference to image tags as it is unlikely
for two images to have the same tag. If both of these return
no matches, then we search for similar changes to the current
change ticket and add the image reference if the similar changes
have any images mapped to them.

Based on the above image mapping, we identify the virtual
topology objects associated with each change ticket and add
change ticket references to the alert(s) mapped to the same
topology object through entity resolution (§V-A) if the change
was recently deployed before the alert was generated.

E. Virtual Topology

In legacy systems, a (physical) node is often equivalent
to an application (or multiple processes running in the same
node) or one database and physical interfaces thereof represent
connectivities with other nodes (applications). In today’s cloud
systems, a physical node is virtualized to run multiple virtual
machines (VMs), even further each VM is virtualized to run
multiple containers. Also, the virtualized network provides vir-
tual interfaces that support overlay or hybrid protocols. Figure 1
illustrates evolution from legacy systems (left) to contemporary
cloud systems (right).

To correctly diagnose a problem, identifying where alerts
are generated is the key to understand the problem correctly.
The systems are often represented as topological graphs that
have nodes (i.e., any box in Figure 1), and edges (i.e., vertical
connectivity or horizontal connectivity). Table I shows types
of nodes and edges representing cloud systems: 52 node types
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and 41 edge types. The semantic relationships among nodes
and edges are quite complex as shown in Figure 3. Therefore,
identifying ‘correct’ topological entities (§V-A) and correlating
alerts derived from them (§V-C) are the main stepping stones
for SREs to tackle the problem.

F. Enrichment

Artifacts like alerts or change tickets generally make ref-
erence to topological entities to which they relate. Knowing
which topological entities are involved is necessary for problem
localization, and is a general assistance to any correlation effort.
These entities are not always explicitly listed in a well-formatted
way, although they sometimes are. They may be included in a
JSON object that has been converted to a string in an embedded
field that is standard in a particular deployment, referenced by
name in a field provided by a performance monitor template,
or identified by IP address in the free text of the description.

Logs and metrics are two key sources of information that an
application generates, irrespective of whether it is in healthy
state or unhealthy state. Moreover, the logs generated by an
application are in a finite space such that they can be mined and
mapped to a set of template-ids. In order to use logs for event
correlations, each log line is processed and templatized using
a pipeline called as log-template pipeline. The log-template
pipeline consists of two components, error classification of log
line followed by templatization of log line. When any event
is generated, its corresponding log lines that are within a fixed
duration of the start of the event are fetched. Each log line from
the set of log lines is input to a pre-trained classifier, the output
of the classifier is a 0 (error) or 1 (non-erroneous). The error
classifier allows us to separate log lines pertaining to healthy
state of the system and the corresponding microservice from the
non-erroneous log lines. The outcome of the error classifier is a
subset of total log lines which are then input to the next step of
the pipeline, template miner. A template miner is pre-trained on
millions of log lines that can map a log line to a template id. For
each erroneous log line, we obtain its corresponding template-id
from the template miner, thus yielding a set of template-ids for
all log lines. Each event is enriched with its entities and a set

of template-ids. The entities and template-ids contained in the
enriched event are used at a later stage for event correlation.

G. Normalization

Various data sources (events) flowing into FIXME are nor-
malized or standardized with the same format in order to
increase the cohesion of data types and reduce the redundancy.
Having looked through many data sources, we have found that
the following information is enough to run all the algorithms:
title, description, created at, resolved at, severity, source, and
features. Note that features are expandable to accommodate any
unique information from any data source and source is an object
that includes name, URL, alert id, team, and application.

V. METHODOLOGY

A. Hybrid Entity Resolution

FIXME uses multiple sources for operational events. Some
are more easily associated with a specific topological entity than
others. For example, if our log anomaly detection subsystem
creates an event to alert operations of unusual behavior, then it
can label that event with the exact container that generated the
log being observed. If, on the other hand, we import an alert
from an external alert management system, which in turn created
it in response to a level-crossing observed by a monitoring tool,
matching it with the topology is more difficult.

The first challenge is that these alerts are often created
manually, and how they identify the resource depends on local
standards. To allow the embedded information to be used for
locating the resources, we have defined a “matcher” language
(template) for describing how these locations may be embedded
in the raw alert object. Alert management systems have some
standard fields, so our starting point is a standard extraction file
that checks these known places. Customers who follow local
practices, such as a standard name-value pair in the title of the
alert, can add this information to the template rules file.

In addition to this template-based approach, we also use a
dictionary-based approach to scan for things that “look like”
entity references. Specifically, we know the domain name server
(DNS) in use in the subject environment. We also know a
number of names used by docker images and Kubernetes objects
in this environment. These are all partial names, not knowing
every host name or every image tag, but by combining the names
that we do know with regular expressions for how they generally
appear allows us to search for likely references. To adapt to the
changing environment, we use an internal query system that
allows us to compile a rapid regular expression matcher for
fast application, while still allowing the specific list of names
(dictionary) to be updated dynamically.

The second challenge is that resources may be identified
using different methods, and no single method will work for
all resources. In our case, we use resource IDs (e.g., UUID),
assigned by a topology service when the topological object is
added to its database, but an external monitoring tool will not
know these IDs. Kubernetes has unique object IDs, but they are
also generally invisible to an external monitor. IP addresses and
DNS names identify an endpoint, but that is often just a front
end, such as a Kubernetes ingress or a data center load balancer.

Once we have used the rules file to get a value that should
identify an object in the topology, we then use a search to
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resolve that reference to an object ID. Topology searches need
to identify the time at which to search, so we use the creation
timestamp on the alert. If the alert was actually a result of the
object being deleted, then it did not exist at the creation time
of the alert, so we will not resolve that object. In practice, this
does not appear to be a significant problem.

B. Learning Patterns

The same types of problems tend to happen repeatedly and
capturing them as patterns help the problem determination. In
this section, we introduce various ways to capture patterns for
the given datasets.
Association rule mining: one of the most important data mining
algorithms, aims to discover interesting relationships latent
in large datasets [39]. A typical and widely known example
of association rules application is market basket analysis by
learning from sales transactions. The strategy of association rule
mining is composed of two phases [40]:
• Frequent Itemset Generation: The objective of this phrase

is to find all the itemsets, also called frequent itemsets,
if items occurred together greater than a minimum support
threshold (min sup) in transactions.
• Rule Generation: This phrase is to extract all the high-

confidence rules (i.e., strong rules) based on the minimum
confidence threshold (min con f )) the frequent itemsets gen-
erated from the first phrase.

Fig. 4: An example of converting sequential events to events transac-
tions. In this example, three types of events (i.e., e1, e2, and e3) are
monitored and reported from time tstart to time tend .

A fixed time window (e.g., 10 mins) is applied to generate
events transactions from the sequential events monitored from
tstart to tend (seen in Figure 4). Each row in the table corresponds
to a transaction containing a unique identifier labeled TID
and a set of events in a time window. In this example, let
E = {e1,e2,e3} be the set of all event types and T = {t1, t2, t3}
be the set of all transactions. Supposing min sup = 50% and
min con f = 80%, we could get the frequent itemsets {e1,e3}
and strong rule {e1 → e3} through the calculations shown as
follows:

Support({e1,e3}) =
σ({e1,e3})
|T |

> min sup,

where σ(X) = {ti|X ⊆ ti, ti ∈ T}, and

Confidence(e1→ e3) =
Support(e1,e3)

Support(e1)
> min con f .

The uncovered correlations (i.e., frequent itemsets and strong
rules) can perform basis for decision making and prediction to
support the hybrid cloud management such as event correlation,
anomaly detection, fault localization, and etc.

Log templates: Two events may or may not have a similar
description, however, if the underlying logs are similar then they
are most likely related to each other—this is the key hypothesis
of using logs for event correlation.

Each application consists of several microservices, some of
these services are related to other services forming a graph. If
one service fails then any other service which is upstream or
downstream of the failed service could throw error log lines. It is
important to identify error log lines for each failed microservice
during an execution of an application, collate them together to
form log signature for a particular event.

In order to use logs for event correlations, each log line is
processed and templatized, then they are collated to form a log-
signature for each event. To recall, from §IV-F the log-template
pipeline consists of two components, error classification of
log line and templatization of log line. As a result, for a
given event, there is a set of templates-ids and correspond-
ing application-ids. We propose a log-signature representa-
tion for each event from its template-ids and corresponding
application-ids, and use that for event correlation. The example
below shows a log signature for an event; there are three
log template ids—template_id_a, template_id_b,
template_id_c; two log template ids (template_id_a
and template_id_b) belong to application_id_a,
and one log template id (template_id_c) belongs to
application_id_b. This representation is called as log
signature of an event.
{
"templates": [{

"application_id": "application_id_a",
"template": "template_id_a"

}, {
"application_id": "application_id_a",
"template": "template_id_b"

}, {
"application_id": "application_id_b",
"template": "template_id_c"

}]
}

Once we have a log signature for each event, the similarity
is calculated between two events by computing the overlap be-
tween their application ids; for each application id that overlaps,
it computes the overlap between their respective templates ids
to calculate a score called as log template similarity score. For
event grouping using template clustering, the algorithm starts
with a list of groups, each group could contain one or more
events. Next, it computes the similarity between each pair of
groups using the log template similarity, as explained above.
This produces pairs of groups with similarity score between
them, the pair with the highest similarity score which is above
a threshold is taken and the groups in the pair are merged into
one single group. Then the process is repeated until there is only
one group left or the highest similarity score between groups is
below the threshold.
Word embeddings: Application events, different from network
events, are not often structured in that the data descriptions or
log messages are written in natural language. So, the natural
language processing would help understand the patterns of
the events. Because learning word embeddings is effective to
capture the same or similar representation for words that have
the same meaning [41], the fastText1 word embedding (vector

1 https://fasttext.cc/
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size = 300) has been applied to the alert descriptions to train the
embedding model. Later, this model turns alert descriptions into
learned representations. In order to identify how the embedding
space is clustered, a balanced iterative reducing and clustering
using hierarchies (BIRCH) clustering algorithm is applied to the
embeddings [42].

The silhouette coefficient is a measure [−1,1] of how close
each point in one cluster to points in the neighboring clusters
and thus provides a way to assess goodness of clusters. Fig-
ure 5 shows the silhouette coefficients. The average silhouette
coefficient is the maximum when the number of clusters is
15. This means the quality of clustering is the best when
15 clusters are formed. This will be further evaluated in the
evaluation (§VI-D). Also, for the same number of clusters,
Figure 6 shows the clustering space in 2 dimensions with t-
SNE that is a technique of non-linear dimensionality reduction
and visualization of multi-dimensional data.

C. Hybrid Correlation

As briefly discussed in §I and §III, generally similarity (e.g.,
rules, patterns), knowledge (e.g., scenario, knowledge base), and
statistical (e.g., statistical estimation, causal relation estimation,
reliability degree combination) approaches are used for the
information correlation [4, 5]. Table II compares the three
approaches qualitatively. Not one approach is perfect, but an
hybrid approach would complement deficiencies.

- Similarity Knowledge Statistical
Group alerts from diff. sources O O X
Require prior knowledge O O X
Detect false alerts O O Guess
Detect multi-stage incidents X O Guess
Find new incidents O X O
Error rate Mid Low High

TABLE II: Qualitative comparison for different approaches

FIXME uses a mix of different methods to make a correct
verdict on the correlated information. For similarity, rules (time,
spatio, prior information), patterns/templates (§V-B), and for
knowledge, knowledge base (capture causal inference from
SREs or root cause analysis), feedback (§V-E), and lastly for
statistical, machine learning algorithms (e.g., association rule
mining), clustering (§V-B) are used. Figure 7 illustrates some of
methods in time (y-axis) and spatial (x-axis) dimensions.0,1,
and5 represent spatial information (§IV-E), respectively, phys-
ical nodes, VMs and containers that have vertical relationship
with “runsOn”, and horizontal relationship with “dependsOn”
(Table I). `, a, and e represent different types of alerts.
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Fig. 7: Illustration of correlated alert groups with different methods

dotted-0 describes correlated alert groups that are made
by different methods. The temporal group is based on the
time given that alerts are generated from the same topological
entity. Similarly, the spatial considers both time and space
where entities have a special semantic relationship (in this
case “dependsOn”). The rule group is derived from SREs’
input, apriori group is based on the patterns learned from the
association rule mining, and the similarity of log-template group
is measured by templates of alerts (logs). We demonstrate the
effectiveness of this ensemble approach in §VI-C.

D. Localization

The correlated alert group itself explains about the problem,
but often case, it is not enough for software developers and
SREs to understand the root cause immediately, especially
when the group includes multiple alerts from different locations.
Additional explainability would help localize the problem and
understand the impact of it. Treating alerts in the group as
error signals and knowing the topological entities and their
relationships render reasoning to find the root entity of the
problem and its impact for the related entities. In Figure 7,
dotted-5 shows the localized entity given the correlated group
based on the apriori. dotted-1 is a blast radius (impact) of
the problem. While SREs know well about the architecture of
their application, the localization and blast radius help SREs
to visualize the problem together with the description of the
alerts. FIXME uses a Souffle1 reasoner to traverse topological
entities with error signals and outputs topological entities for
localization and blast radius.

E. Continuous Improvement (Feedback)

The feedback is an essential part of continuous learning for
AIOps systems, but collecting feedbacks is challenging with the
following reasons: first, collecting a large number of feecbacks
is hard as SREs are not committed or incentivized; second,
correctness or consistency is not guaranteed due to ambiguity
from different experiences or skillsets; third, details are often
missing as the most effective way is yes/no or thumbs up/down
or at best drop-down with a short list of selections. Especially,
since the ChatOps interface (main interface for FIXME) flows
based on timeline rather than dashboard, it is harder to wait
SREs to finish the work and come back to provide feedbacks.
Therefore, learning from minimal feedbacks (i.e., active learn-
ing) is important. The feedback is expected to improve the
correctness of correlation and suppress false positives. FIXME

1 https://github.com/souffle-lang/souffle
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uses a content-based approach that leverages clustering split and
merge operations based on the word embedding [43] (§V-B).
Applying feedbacks improves correctness of rules, patterns, and
knowledge base.

VI. EVALUATION

FIXME enables hybrid diagnosis approaches on various data
types to correctly identify entities and group information for
software engineers and SREs to diagnose problem without
spending too much time for post-mortem analysis. In this
section, we evaluate FIXME with the following goals:
• Demonstrate a hybrid approach for data enrichment with

entity resolution and show the effectiveness (§VI-B),
• Show how hybrid correlation approaches improve correct-

ness (§VI-C), and
• Analyze how minimal feedbacks can improve the correlation

results (§VI-D).

A. Setup

A total of 12,696 alerts (1 year) have been obtained from
the product team that manages a software as a service (SaaS)
application in IBM Cloud1. Our algorithms have been applied
to 1,134 alerts for a worth of 1 month and identified 382 issues
(groups)—141 issues have more than 1 alert and the rest 241
includes only single alert. This dataset has been shared with
developers and SREs to get feedbacks for each alert whether it
belongs to the correct group or not. The rest of 11,565 alerts
have been used for training to learn patterns. In addition, the
snapshot of the virtual topology running on Kubernetes has been
shared. It includes 516 nodes, 755 deployments, 1,532 pods and
801 services.

B. Hybrid Entity Resolution

Our two main extraction techniques, described in §V-A, are
template-based and dictionary-based approaches. As the labeled
dataset does not include the ground-truth of the topological
entities, we use the sampling and manual labeling. When
deciding on which to incorporate into the final system, we start
with a random sample of 10 events from the dataset, and have
manually identified 16 useful topological references that they
contain (true positives). The template-based approach finds 9,
and the dictionary-based approach finds 10, so the combined
approach returns 15 correct (93% accuracy). However, only 4
are found by both. Although it is a small set, the results gave
us a clear indication that neither technique alone would likely
be sufficient.

C. Hybrid Correlation

As described in §V-C, the hybrid correlation would benefit
toward correctness. In this section, we show how applying
various methods help improve performance.
Temporal and spatial: Without learned models that help
identify similarity, knowledge, statistical patterns, the time and
space are base attributes towards the correlation. Out of 1,134
alerts (forming 382 groups), based on time and space, 825 alerts
labeled as correct (TP), 68 as incorrect (FP), 241 (single alert

1 The application name and data are considered IBM confidential, so it is not
included in this paper

Fig. 8: Running time for gener-
ating frequent itemsets and as-
sociations rules at different min-
imum support levels

Fig. 9: The number of frequent
itemsets and associations rules
at different minimum support
levels with min con f = 0.5

in group) as not applicable (FP). Since the data is not necessar-
ily associated problems, feedbacks about what additional data
should be included (FN) have not been collected2. Therefore,

Precision(P) =
T P

T P+FP
=

825
1134

= 0.73

Recall(R) =
T P

T P+FN
=

825
825

= 1.00

F1Score =
2×R×P

R+P
=

2×1.00×0.73
1.00+0.73

=
1.46
1.73

= 0.84

Given the labeled data without knowing true/false negatives,
precision is important to understand correctness. This is our
baseline performance.
Association rule mining: In this section, we explain how we
apply apriori, one of the most popluar association rule mining
algorithms, to find frequent co-occurrence alerts (i.e., events)
from our dataset, which are generated from 73 sources (i.e.,
pods, containers, nodes). Our goal is to find associations among
these alerts from each source. As detailed in §V-B, we first
get alert transactions from sequence alerts and use apriori to
generate frequent itemsets and rules for each source. Since
each source is not large enough, 5 mins is used as the fixed
time window and finally we get 852 transactions in total. The
maximum number of transactions in sources is 52 and the
average numer is 12. The performance curve of running time for
generating frequent itemsets with minimum supports from 0.2 to
0.9 is shown in Figure 8. Figure 9 indicates that the number of
frequent itemsets and the number of association rules increases
as the minimum support is reduced on this data. In order to
reveal how apriori can improve the correlation performance, we
select a minimum support threshold 0.3 to generate frequent
itemsets. When min sup = 0.3, there are 4 L2 and 2 L3 frequent
itemsets, where Lk indicats the length of itemsets is k, among
all generated 52 frequent itemsets. Based on the feedback from
SREs, all the learned frequent itemsets are the correct groups.
Using these frequent itemsets (i.e., clusters), we split a group
into multiple smaller groups or merge multiple clusters into
a larger one in order to improve the accuracy of groups. As
expected, 31 alerts, out of 68 incorrect labeled alerts from
temporal and spacial group results, are split and merged into
another groups or become a new correct group. the precision of
correlation improves to 0.78, while F1 improves by 3.5%.
Log-template grouping: In this section, we want to verify
the hypothesis that the two similar alerts may or may not

2 True Positive (TP), False Positive (FP), False Negative (FN)
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have a lexically matching incident descriptions, but their logs
should have high overlap and that they are discriminative. In
order to validate the hypothesis, a total of 10 similar pairs
and 19 dissimilar pairs are sampled from the dataset with
their description, log-templates and entities. For each pair of
alerts, we compute the similarity score between them based
on: alert-description, entity, log-templates. To compute the alert-
description based similarity between two alerts, we obtain the
distributed representation using universal sentence encoder for
each alert in the pair, and then compute cosine similarity be-
tween them. For entity based similarity, we first extract entities
from each alert, represent them as a vector of entities. Then, we
compute the tf-idf similarity between them. §V-B outlines our
method for calculating log-template based similarity between
two alerts.

Event-A Event-B Log-template Entity Event-desc
IN0978216 IN0985100 0.74 0.53 0.74
IN0978216 IN0986908 0.7 0.52 0.72
IN0985100 IN0986908 0.74 0.69 0.68
IN0995065 IN0996789 0.67 0.74 0.95
IN1000302 IN1005779 0.68 0.88 0.94
IN1000302 IN1010277 0.75 0.65 0.99
IN1005779 IN1010277 0.72 0.62 0.94
IN1012171 IN1010277 0.85 0.79 0.82
IN1012171 IN1000302 0.7 0.6 0.82
IN1012171 IN1005779 0.69 0.59 0.83

AVERAGE 0.72 0.66 0.84
STDEV 0.049 0.10 0.10
MEDIAN 0.71 0.63 0.82

TABLE III: Similarity scores for 10 pairs of similar events using three
different methods: log-template, entity, and alert description

The results of the experiments are presented in Table III
and IV (w/o each data point). The average similarity scores of
both similar and dissimilar alert pairs are computed using alert-
description are 0.84 and 0.75, respectively. This shows that one
cannot rely only on the alert-description based similarity score,
as it might result in a lot of false positives. Although, precision
will be high, but accuracy will be low; these results indicate that
the alert-description based similarity score is not discriminative
enough to discriminate similar pairs from dissimilar pairs. On
the other hand, the average similarity scores of both similar and
dissimilar alert pairs calculated using log-template are 0.72 and
0.55, respectively. It clearly indicates the discriminative power
of log-template based similarity scores, where it can clearly
discriminate the similar pairs from the dissimilar pairs. The
entity based similarity scores show similar results. That is, the
average similarity score for similar and dissimilar pairs are 0.66
and 0.53, respectively.

In order to establish the threshold value for alert grouping,
i.e., when the similarity between groups is less than a threshold
then the grouping should stop, we calculate the accuracy of
log-template based alert grouping, entity based alert grouping,
and alert-description based alert grouping for different threshold

Log-template Entity Event-desc
AVERAGE 0.55 0.53 0.75
STDEV 0.09 0.07 0.06
MEDIAN 0.54 0.54 0.75

TABLE IV: Similarity scores for 19 pairs of dissimilar events using
three different methods: log-template, entity, and alert description

Threshold=0.6 0.65 0.7
Alert-description 0.34 0.38 0.48
Time & Spatial 0.72 0.75 0.79
Log-template 0.82 0.89 0.89

TABLE V: Precision of different event grouping models for varying
values of threshold
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values. Table V shows that the precision of alert-description
based alert grouping is the lowest, and the precision of log-
template based alert grouping is the highest. The maximum
precision of log-template alert grouping is 0.89 when the
threshold is set to 0.65—therefore, this is used in FIXME.

D. Feedback

From the labeled data, we take the incorrect labels (6%
response rate) as feedbacks. As detailed in §V-E, FIXME
collects a simple feedback, yes/no from SREs, and uses them to
perform clustering split and merge operations to divide a cluster
(group) into multiple clusters or combine multiple clusters into
one cluster. Both cases help improve the correctness. 11,565
alerts have been used for training word embeddings (size =
300) (§V-B) and the word embedding vectors are used as input
to the clustering. Figure 10 illustrates the quality of clusters
(i.e., consistency) using silhouette score and accuracy against
the labeled data (§VI-A). 15 clusters show the best consistency
and accuracy. From the labeled data (§VI-C), out of 68 incorrect
labeled alerts, 46 alerts have been split and merged into another
groups, then become correct. Also, 149 alerts (241 from single
alert groups) have been merged into other groups, then they
become correct. Therefore, the precision improves to 1020

1134 = 0.9
and F1 score becomes 0.95.

VII. CONCLUSION

We have introduced hybrid approaches used in the AIOps
production systems, and demonstrated that hybrid entity reso-
lution and hybrid event correlation provide better results than
any single method. Our experimental results clearly show that
combining template-based and dictionary-based approaches to
entity resolution achieves 93% accuracy, while neither technique
alone provides sufficiently good results. We also show that con-
secutive application of temporal and spacial methods together
with association rule mining and log-template grouping, help to
improve performance. We conclude the paper with description
of methods used for feedback processing for improved accu-
racy. We have focused our initial work on data enrichment,
correlation of variety of data and fault localization methods as
these two steps were identified by SREs as most difficult in
their troubleshooting process, we plan to focus on root cause
identification next.
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