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Abstract

We apply the machinery of interventional causal learning with
programmable interventions to the domain of applications
management. Modern applications are modularized into in-
terdependent components or services (e.g. microservices) for
ease of development and management. The communication
graph among such components is a function of application
code and is not always known to the platform provider. In our
solution we learn this unknown communication graph solely
using application logs observed during the execution of the
application by using fault injections in a staging environment.
Specifically, we have developed an active (or interventional)
causal learning algorithm that uses the observations obtained
during fault injections to learn a model of error propagation
in the communication among the components. The “power of
intervention” additionally allows us to address the presence of
confounders in unobserved user interactions. We demonstrate
the effectiveness of our solution in learning the communication
graph of well-known microservice application benchmarks.
We also show the efficacy of the solution on a downstream task
of fault localization in which the learned graph indeed helps
to localize faults at runtime in a production environment (in
which the location of the fault is unknown). Additionally, we
briefly discuss the implementation and deployment status of a
fault injection framework which incorporates the developed
technology.

Introduction
Distributed modularized applications, such as cloud-native
and hybrid cloud microservices, are becoming a dominant
form of enterprise applications today. These applications, par-
ticularly those running on a deeply virtualized infrastructure,
are highly complex and generate massive amounts of monitor-
ing data, posing significant challenges in ensuring application
reliability. Indeed, the Uptime Institute 2022 Outage Report1
concludes that the number of severe outages is not decreasing
and the outages are becoming more costly as “scale, complex-
ity, and secondary failures lengthen recovery times”. There
is a great need, therefore, for an alternative approach for ap-
plication management which is not plagued by the massive
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operational data in production. The solution approach we
propose is a framework for learning causal knowledge via
fault injections in a staging environment, which is then used
for application management in production.

In modularized applications, components or services com-
municate with one another in ways that depend on triggered
userflows. Here we consider userflows triggered by human
actors as well as by systems. For example, reserving a hotel
room and cancelling it are two different types of user requests
that trigger distinct sequences of service calls. In any applica-
tion, multiple userflows are routed through various services
at any point in time. When a service exhibits a fault, any
services calling it may in turn throw errors, creating a storm
of exceptions from multiple services, making it very difficult
to localize the problem.

In machine learning terms how errors propagate in the
system translates to the learning of causal dependencies or
the possible communication links that exist between various
components. In this context, the freedom to inject faults at
will provides the ability to perform interventions. This is
particularly attractive since the power of intervention allows
us to bypass much of the difficulty in learning causal rela-
tionships from observational data, such as the presence of
latent confounders, a well recognized issue in causal learning
and inference. Since injecting faults in a production environ-
ment is undesirable, we propose a framework for active in-
terventional causal learning from fault injections in a staging
environment. Specifically, we adopt the methods developed
in (Kocaoglu, Shanmugam, and Bareinboim 2017) and apply
them to the problem of learning causal dependencies (i.e.,
error propagation) between application components.

Knowledge of the communication causal graph is critical
in many downstream tasks in IT operations, such as active
probing (Tan et al. 2019), testing (Jha et al. 2019), taint anal-
ysis (Clause, Li, and Orso 2007) and fault localization (Zhou
et al. 2019). Usefulness of our methodology in such down-
stream tasks is demonstrated by applying it to fault localiza-
tion. With that goal we devise an algorithm that leverages the
causal knowledge learned in the staging environment to per-
form fault localization (i.e. identifying the originating faulty
component) in production based on observed error patterns
in that environment.

The causal learning solution we developed has been in-
tegrated into our fault injection framework, which is in use
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by several divisions within IBM (see Section ). To provide
a base for possible comparative analysis, we validate and
demonstrate our methodology using two publicly available
benchmark microservice applications, achieving a competi-
tive level of accuracy in learning the true edges of the under-
lying causal graph (actually the transitive reduction which
is the minimal edge subgraph that preserves the ancestral
relationships) in both cases. We also show that the learned
graph can help achieve a practical level of accuracy in a
downstream task of fault localization. Since we deploy our
methodology in the context of microservice-based cloud-
native applications, our exposition in the subsequent sections
will be in terms of ”microservices.” We note, however, that
our methodology can be applied more broadly to other highly
modularized multi-component systems (and applications) as
long as the individual components interact with one another
through APIs.

To the best of our knowledge, this is the first application of
the machinery of interventional causal learning to a problem
of significant importance in applications management.

Related Work

Learning the communication graph: Modern applica-
tions (and systems) are highly distributed, modularized, and
interact with one another using network calls. To manage
such complex, modularized applications to ensure reliability,
site reliability engineers (SREs) need to know the communi-
cation graph. Current approaches for extracting the commu-
nication graph involve techniques such as (i) tracing (Sigel-
man et al. 2010) which involves performance-impacting ap-
plication instrumentation for each component and (ii) code
annotations. Unfortunately, neither of these approaches are
applicable in the context of multi-component applications in
which components are developed and managed by different
entities; thereby requiring an automated machine learning
approach for extracting the communication graph.

Causal learning with interventions: Earlier works on us-
ing active learning through intervention studied how many
randomized interventions are needed for learning a causal
DAG when there are no latents (Eberhardt, Glymour, and
Scheines 2006; Eberhardt and Scheines 2007; Hauser and
Bühlmann 2014). Another body of work investigated the
number of interventions that would be required to learn a
causal DAG assuming access to the observational Markov
Equivalence class in the adaptive and non-adaptive settings
(Lindgren et al. 2018; Shanmugam et al. 2015; Squires et al.
2020; Ghassami et al. 2018). All these works focused on
learning causal DAGs assuming there are no latents that con-
found multiple observed variables. Non-adaptive intervention
design for confounded causal models was studied recently
in (Kocaoglu, Shanmugam, and Bareinboim 2017; Addanki
et al. 2020; Bello and Honorio 2017). Our algorithm in this
work is inspired by this recent line of work where single
node randomized interventions on confounded systems are
performed and the data collected is used to infer ancestral
relationships. We show that these ideas are applicable in
managing distributed applications in the cloud after suitable
modification.

Fault localization: Existing approaches to fault localiza-
tion in microservice applications and other distributed sys-
tems can be classified into the following categories: 1) Artifi-
cial intelligence techniques, 2) Model traversing techniques,
and 3) Graph-theoretic techniques. AI techniques include
rules-based or model-based methods. Rule-based methods,
e.g. Liu, Mok, and Yang (1999), and Lor (1993), tend to
require domain knowledge, and hence the maintenance of the
rules can be laborious. Model-based approaches, e.g. neural
network-based methods and others (Zhou et al. 2019; Liang
et al. 2016; Qi, Yao, and Uzunov 2017), generalize better
and fare better with noise and inconsistencies in the data.
These approaches require a large amount of training data
and “extrapolation” is a known challenge (Gardner and Harle
1997, 1998; Qi, Yao, and Uzunov 2017). Model traversing
based approaches require the domain topology over the com-
ponents of the application. They can be effective when the
entity relationships adhere to certain restrictions but there are
challenges otherwise (Kätker and Paterok 1997). Although
fewer, there have been some works such as Mariani et al.
(2018), Gan et al. (2021) and Zhou et al. (2019) that have
applied causal approaches for fault localization using traces.
The present work contrasts with these works in that it targets
the limited observability scenario, e.g. traces are not avail-
able on customer applications to the cloud computing service
provider due to the reasons stated earlier in this section.

Problem Definition and Methodology
Modularized modern applications, such as those using mi-
croservices architecture, consist of many loosely coupled and
independently deployable code components that interact with
one another to execute business logic. A representation of
all possible requests between microservices that the code is
architected to trigger is given by the communication graph.
A service or cloud platform provider typically does not have
access to code internals and therefore will not know the com-
munication graph.

In a production environment, a microservice may experi-
ence a fault leading to the failures of the requests directed
towards this faulty microservice. This may cause errors in
other microservices effectively leading to stalling or failure
of the application. Quickly localizing the microservice at
the root of the problem (i.e., user request failure) is critical.
This is known as the Fault Localization Problem. When the
communication graph is unknown, localizing at runtime the
faulty microservice is especially difficult. Therefore knowing
the communication graph without accessing the code details
becomes critically important to perform fault localization
(apart from being useful in many other downstream tasks).

We inject faults into microservices in a staging environ-
ment (before full deployment) to generate the necessary data
to solve the problem of learning the communication graph.
The type of fault we consider in this paper is one in which
the injected microservice fails by not responding to requests
directed to it. The injected fault then propagates to any other
microservice dependent on the faulty microservice (the one in
which the fault was injected). For injected faults to manifest,
requests to the faulty microservice must occur. We generate
them by simulating one or more userflows consisting of a
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specific set of actions taken by a user or system. This will
create cascading requests across one or more microservices
including the one in which the faults are injected. The user-
flows are simulated by capturing the real traffic from the
production (in case the application is already deployed) or
test-cases written by developers to validate the application’s
business logic. We collect data to identify which dependent
microservices are impacted by the faulty microservice. In
the present work, we assume access to the logs emitted by
every microservice. Each log line is classified as normal or
erroneous. However, we can use other indicators (e.g., metric
data such as request latency) to identify which dependent
microservices are impacted by the faulty microservice.

We learn the graph of causal relations between errors in
microservices, which is the reverse of the communication
graph, as errors propagate in the opposite direction in which
microservices communicate. Our overall methodology is de-
picted schematically in Figure 1.

Figure 1: Our interventional causal learning methodology.

Algorithms and Techniques
We use a structural causal model (Pearl 2009) that explains
the data generating mechanism of logs under fault injection.
This is one of our principal contributions. The mapping of
error log counts under fault injection in a microservice appli-
cation to a structural causal model with possible confounders
is crucial to apply interventional learning algorithms.

Structural Causal Model
In a structural causal model (SCM), we have a set of n un-
observed exogenous variables U = {u1 . . . , un} and n ob-
served endogenous variables X = {x1 . . . , xn}. Every en-
dogenous measured variable xi is causally related to some
parental endogenous measured variables xj , j ∈ Pax(i)
and an unobserved exogenous parent variable ui through a
function fi(·), i.e. xi = fi(xPax(i), ui), ∀i ∈ [1 . . . , n]. The
set of parents Pax(i) for every variable i defines a directed
acyclic graph (DAG) called the causal DAG.

Mapping SCM to microservices: Our endogenous mea-
sured variable xi is the count of erroneous logs emitted by
a microservice i in a specific time bin t. Our unobserved
exogenous variables ui represent the userflow variables (user
inputs that are completely unobserved) that determine, at time
bin t, the presence of (multiple) user requests that reach mi-
croservice i. The parents of i, Pax(i), are those microservices
that i can call. Note that the edge is oriented in the opposite
direction compared to the true communication graph. This
is because errors propagate in the opposite direction. fi(·)
represents the application code detail (that is actual but not
observed) that relates the count of errors thrown by microser-
vice i, given the realization of the userflow ui and whether

there have been errors thrown by the parents in the causal
graph (error propagation graph). For example, in a web based
reservation application for hotels, a user might interact with
the system to check availability. The user activity at time bin t
would trigger requests to go between only a specific sequence
of microservices. These microservices may or may not throw
an error for i even if the error is thrown by j ∈ Pax(i), since
the particular user request at i might be processed by a differ-
ent parent other than j due to the specific handling of the user
request by the application code (captured by the userflow
variable). This is illustrated in Figure 2.

Figure 2: Structural Causal Model for microservice error log
generation. The edges are reversed version of those in the
true communication graph. Error counts of a microservice is
a function of userflow and the error counts of its parents in
the error propagation causal graph.

Confounding and causal insufficiency: One of the key
attributes of this model is that joint distribution of userflow
variables ui that represent user requests’ influence on mi-
croservice i in any time bin t are correlated, i.e. P (u) 6=∏

i∈[n] P (ui) and then the distribution does not factorize.
This is because a specific user activity correlates with a subset
of microservices depending on the type of user activity (e.g.,
booking a hotel involving payment service versus checking
availability that does not involve a payment service). There-
fore, in general the observations are confounded leading to
a causally insufficient system. Relations between userflows
and observed error logs are illustrated in Figure 3. Correlated
error logs appear in a time bin if many user requests that take
a specific communication path occur together.

Remark: Note that the graph represents the real and phys-
ical communication between microservices in an application.
The userflow/user activity cannot be observed directly by a
platform provider. Further, they confound error counts from
logs of multiple microservices depending on the type of user
activity which is an unknown distribution. The communica-
tion graph is also sparse and this sparsity comes from how
the code is instrumented in the application. Usual objections
to SCM modeling (Imbens 2020) such as expert evidence
supporting sparsity are moot in this case as naturally the sys-
tem’s communication graph is sparse and it is a real logical
entity that has causal implications for error propagation.

Learning the Communication Graph
We would like to learn the true edges of the error propaga-
tion causal graph (whose edges are reversed from the true
communication graph). As noted before, the error log count
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measurements xi are confounded due to unobserved user-
flows making it a causally insufficient system2.

We leverage interventional causal learning algorithms that
target the learning of a causal DAG in the confounded case
from interventions that have been developed in the causal
learning literature (Kocaoglu, Shanmugam, and Bareinboim
2017; Addanki et al. 2020).

An interesting property of confounded systems is that in-
tervening on every node in turn is not sufficient to recover the
causal graph (Addanki et al. 2020). In fact, for single node
interventions, it is necessary and sufficient to intervene on all
the nodes to recover the true ancestral relationships. This is
in direct contrast to the causally sufficient case where single
node interventions in turn can recover the true causal graph
(Hauser and Bühlmann 2014).

We estimate the minimal set of edges that would preserve
the ancestral relationships in the error propagation causal
graph called the transitive reduction (TR). The TR proves to
be useful in matching the pattern of errors in a production
environment that helps in localization of faults.

Let the set of microservices be given by S. Let xs, s ∈ S
be the count of error logs of a microservice in a time bin t.
An epoch of fault injection lasts Tb time bins. v(s) ∈ ZTb×1

is an intervention pattern, where v(s)[t] = 1 means that in
time bin t, a fault was injected in microservice s. Over the
epoch we observe the counts of error logs for a microservice
s and record it in a count matrix C, where C(t, s) represents
the number of error logs for microservice s recorded in the
log lines at time bin t.

When s′ has been intervened in an epoch and s has not
been intervened, a candidate causal effect of s′ → s is com-
puted by a simple correlation between s′ and s and then it is
thresholded at some τ :

corr(s′, s) =
v(s′)TC(:, s)

|v(s′)|
(1)

Assumption 1 The userflow distribution P (u) and the func-
tions f ′is are such that if microservice sj has emitted error
in the time bin t then (i) if j ∈ Pax(i) in the error propaga-
tion graph Eu[C[t, si]] ≥ τ ; (ii) if j 6∈ Pax(i) in the error
propagation graph C[t, si] = 0 almost surely.

In the staging environment, there is a set of user requests U .
Each userflow configuration u ∈ U is run through the system
in sequence one after the other with some time gap. When
all user requests are run, again the same sequence is repeated
until end of an epoch. In each epoch, fault is injected in a
fixed microservice s and the fault is held for all time bins Tb
in the epoch and logs are collected for the epoch.

Our fault injection based causal learning algorithm is de-
scribed in Algorithm 1 that operates on error logs counts
obtained over n epochs (where n = |S| is the total number of
microservices in the system). It then computes correlation 1
with all microservices s not intervened in an epoch and edges
with high correlation above the threshold are retained. Then,
transitive reduction of the edges is performed to obtain the
minimal subgraph that preserves ancestry in the true error

2Note that we do not assume the knowledge of internals (or
actions present) in the userflows which leads to confounding.

propagation graph. Further, all edges obtained are true causal
edges (under Assumption 1) when the number of time bins
is large enough. We restate the result in (Kocaoglu, Shan-
mugam, and Bareinboim 2017) to justify our first algorithm
under Assumption 1.

C

D

B

A
bin 1 bin 2 bin 3

request/call flow
error propagation

fault
C

D

B

A

error log
normal log

microservice userflow: u userflow: v userflow: u, v, v

userflows:
u: A -> D
v: A -> B -> C

Figure 3: Illustration of userflows and error logs over time.
The edges in the error propagation graph are reversed to
obtain the communication graph. Microservice error counts
depend on the userflows, i.e., specific user requests paths.

Theorem 1 (Kocaoglu, Shanmugam, and Bareinboim 2017)
Under Assumption 1, with threshold τ , then Algorithm 1’s
output is the minimal edge subgraph that preserves all an-
cestral relationships in the error propagation causal graph
when the number of bins tends to infinity. Further, every edge
in the output is present in the error propagation causal graph
(reversal of which is present in the actual communication
graph).

Algorithm 1: Single-Fault Injection Causal Learning

1: Inputs: τ > 0
2: Initial: E = φ, G = (S,E)
3: for all s′ ∈ S do
4: Inject fault into s′ based on v(s′), the all ones vector,

and hold the injected fault for all time bins Tb.
5: Filter error logs and generate C(s′)
6: for all s ∈ S − s′ do
7: if corr(s′, s) > τ and (s→ s′) /∈ E then
8: E = E + (s′ → s)
9: end if

10: end for
11: end for
12: Return: Gtr = Transitive Reduction(G)

The above algorithm returns a subset of true causal edges
that minimally represent all ancestral relationships in the
error propagation causal graph. However, it requires as many
epochs as the number of microservices in the system.

Remark: An epoch lasts for Tb time bins and a finite set
of userflows U are run in a sequence. So, any given time bin
randomly sampled induces a uniform distribution P (u) over
U . If there is an ancestral relationship between microservices
i and j in the error propagation graph and if there is an error
in i, Assumption 1 can be interpreted to require that error
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gets propagated to j in τ fraction of the time bins in an epoch
and if there is no ancestral relationship, no error is thrown.
This requirement is agnostic to variations in the system, syn-
chronization issues with respect to the log collector during
the application deployment.

Fault Localization
We now illustrate an application of our causal graph learning
algorithm to one downstream task of fault localization. We
recall that the fault injection stage produces a minimal edge
subgraph that preserves ancestry of the original communi-
cation graph (“transitive reduction”). Our fault localization
algorithm compares the observed error patterns in the logs
during deployment for Tb time bins against the catalog of
expected error patterns for each candidate fault location given
by the transitive reduction in order to infer the likely fault
location. The details of this fault localization algorithm is
described in Algorithm 2. Every microservice is a candidate
root cause assuming that the fault is caused by a single mi-
croservice. If microservice s was to be the root cause and if
userflows touch all possible paths over Tb time bins during
deployment due to enough diversity in user activity, very
likely the descendants of s in the error propagation graph
would all throw errors and non descendants would not. Since
ancestry is preserved by the output transitive reduction Gtr,
we can compare the pattern of errors (by comparing the nor-
malized count of error logs of a microservice s over Tb time
bins versus a threshold δ in Line 4 of Algorithm 2) with that
of the indicator vector of the descendants of a microservice s.
The one with the lowest structural hamming distance (SHD)
is declared as the candidate root cause. It is possible that
many microservices have the same minimum SHD to the
thresholded error pattern observed. In that case, we output all
of them as candidate root causes.

Algorithm 2: Fault Localization Using Transitive Reduction
Graph for Unknown Interventional Microservice s′

1: Inputs: δ > 0, Gtr, C(s′)
2: Initial: correlation matrix A = 0 ∈ Z|S|×|S|
3: for all s ∈ S do
4: Calculate the correlation score for microservice s as

corr(s) = 1{1TC[:, s]/Tb) > δ}
5: for all s, s′ ∈ S do
6: If s′ is an ancestor of s inGtr, then setA(s, s′) = 1,

else A(s, s′) = 0.
7: end for
8: end for
9: for all row s ∈ A do

10: Compute SHD(s) = ‖A[s, :]− corr[:]‖
11: end for
12: Return: mins SHD(s)

Experiment Set-Up
We set up our experimental environment on the Red Hat®
OpenShift® Container Platform (OCP) in a cloud environ-
ment. OCP is an augmented Kubernetes distribution de-
veloped by Red Hat. We also created a Mezmo (former

LogDNA) service instance and deployed the Mezmo agent in
our OCP cluster to collect logs from every microservice and
send them to a centralized repository. The Mezmo service
provides an API for searching and exporting logs from this
repository. We also installed in our OCP cluster the Red Hat
Service Mesh, an Istio® distribution adapted to OCP, enabling
us to inject faults into the microservices of an application.
Finally, we deployed in our OCP cluster two publicly avail-
able microservice applications and added each one to the
service mesh: DayTrader3, a small application with 5 mi-
croservices that simulates an online stock trading system;
and TrainTicket4, a larger application with 41 microservices
simulating a train ticket reservation system.

We integrated our solution into the fault injection plat-
form (Bagehorn et al. 2022) described in Section , that allows
us to inject faults into an application’s microservices without
having to make any source code changes. For injected faults
to manifest, we have developed the necessary userflows for
DayTrader and TrainTicket. Our userflows covered all 5 mi-
croservices in DayTrader, and 33 of the 41 microservices
in TrainTicket, since we have not included administration
user-role actions. In our experiments, we injected one fault
at a time in each microservice covered by our userflows, for
both DayTrader and TrainTicket, and ran the userflows for
a few minutes. That is, the userflows are run with exactly
one fault injected in one of the microservices. After that, we
remove the fault from the application before injecting a fault
in another microservice. In this particular work, we have
injected “http-service-unavailable” faults using our fault in-
jection platform capabilities. However, our methodology is
not dependent on a specific fault type as long as it propagates.

At the end of our experiment, we individually collected
all the logs generated by the applications, resulting in one
file for each microservices fault injection, for a total of 5
fault injection files for Daytrader and 32 for TrainTicket,
since we did not inject a fault in the microservice associated
with its UI. Microservices logs were classified as normal or
erroneous. Fault injections propagated errors in microservice
logs following their causal dependencies (see Figure 3). To
prepare the log data to be consumed by our algorithms in
Section , we partition execution time by 10ms, 100ms, and
1,000ms intervals, thus creating time bins, and count the
number of error logs in each time bin, generating time series
of error counts for each microservice.

Experimental Results
Fault Injection Based Causal Learning
Here we report the results of our fault injection-based causal
learning over the logs collected from the respective microser-
vice applications, i.e., DayTrader and TrainTicket. For each
microservice application, we filter the error logs with times-
tamps and construct the error count time series using three
different time bin sizes: 10ms, 100ms, and 1, 000ms. We
compute four evaluation metrics: structural hamming dis-
tance (SHD), see Tsamardinos, Brown, and Aliferis (2006),

3https://github.ibm.com/ocp-r2-demo
4https://github.com/FudanSELab/train-ticket
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precision, recall, and F1-score, for each microservice appli-
cation, by comparing the transitive reduction of the ground
truth error propagation graph and the output of Algorithm 1
applied on the collected logs. SHD is a popular metric used
to measure the distance between two graphs in terms of the
difference in the edge set. We observe that both bin size and
threshold τ play an important role in our causal learning as
this is fundamentally an unsupervised learning problem of
recovering ground truth from noisy observations. We find
that, for both of the two microservice applications, the per-
formance is better with a large bin size of 1, 000ms. Fixing
the bin size as 1, 000ms, Table 1 documents the performance
metrics for DayTrader and TrainTicket with different thresh-
olds. We note that our Algorithm 1 is able to recover exactly
the ground truth for the smaller application DayTrader (for a
wide range of thresholds τ = 0.01, 0.03, 0.1).

Application τ SHD Precision Recall F1

DayTrader

0.01 0 1.00 1.00 1.00
0.03 0 1.00 1.00 1.00
0.1 0 1.00 1.00 1.00
0.3 2 0.75 0.75 0.75
0.4 4 0.50 0.50 0.50

TrainTicket

0.01 36 0.68 0.54 0.60
0.03 33 0.73 0.54 0.62
0.1 37 0.71 0.44 0.54
0.3 52 0.40 0.08 0.13
0.4 51 0.33 0.22 0.04

Table 1: Fault Injection Causal Learning results by comparing
the transitive reduction of ground truth and the output of
Algorithm 1 for DayTrader and TrainTicket with different
τ values and a fixed bin size of 1, 000 ms (the best setting).

Fault Localization
We further evaluate the results of fault localization by our
fault localization algorithm (refer to Algorithm 2) using the
output of the interventional causal learning stage. Table 2
exhibits these results for various experimental conditions
(threshold δ = 0.03, 0.1, 0.4). In order to assess the efficacy
of our algorithm in finding the correct fault locations, we mea-
sure for each condition both the accuracy (the percentage of
injected faults that is correctly localized by our algorithm’s
output, i.e., an estimated set of candidate root causes) and in-
formativeness (the percentage of microservices that are not
in the fault location estimated set. Thus, the more exclusions
in the set, the more informative the estimated set: a value of
100% indicates the prediction consists of only one location,
and a value of 0% indicates the estimated set is as large as
the total number of candidate locations).

Implementation and Deployment Path
Our causal learning solution is integrated into our fault in-
jection framework, which is currently in use by (i) IBM
product development teams to assist in the validation of their
AIOps solutions, (ii) IBM Consulting to assist in customer
engagements, and (ii) IBM’s Sales Cloud team to support
their continuous integration and deployment pipelines.

δ Accuracy (%) Informativeness (%)

0.03 93.75 86.93
0.1 90.63 79.55
0.4 15.63 21.69

Table 2: Fault localization performance on TrainTicket using
the output of Algorithm 1 with different δ values and a fixed
bin size of 1, 000 ms.

Our fault injection platform has been implemented as a set
of FastAPI microservices written in Python and deployed to
Kubernetes and Red Hat OCP clusters. The main microser-
vices are (1) a fault injection UI to enable manual manage-
ment, (2) a fault injector using different fault injection mecha-
nisms, (3) an arbitrator or control plane to enable automation
of fault scheduling and orchestration to create more realistic
fault scenarios, and (4) a data-collector to collect logs, events,
and traces from monitoring tools, e.g., Instana™.

The platform includes support for injecting faults in re-
mote Kubernetes or Red Hat OCP clusters as well as virtual
machines or bare metal servers running Linux. Thus it allows
our solution to be broadly deployed to any class of distributed
multi-component applications that use APIs to communicate
with one another.

While we only use “http-service-unavailable” faults in
this paper, our fault injection platform supports the invocation
of faults from a proprietary library of faults as well as from
third party libraries such as ChaosToolkit©. This way, spe-
cific faults are available to the end user through simple API
calls. The richness of fault types available through existing
fault injection ecosystems allows for the integration of faults
targeting various cloud environments and covering the whole
stack including the infrastructure, network, middleware, and
application layers.

Conclusions
In this paper, we proposed and developed a methodology of
fault injection-based interventional causal learning to help
manage modern applications that are modularized into inter-
dependent components or services (e.g. microservices), and
demonstrated its execution in a cloud-native environment.
Specifically, our method estimates an edge subgraph of the
true communication graph that preserves ancestry, and uses
that foundational knowledge for downstream management
tasks. We validated its effectiveness in localizing faults in
modern distributed applications for which the topology in-
formation may not be available. The developed methodology
has been integrated into a fault injection framework and is
in use by IBM consulting and deployed by IBM Sales Cloud
team. We emphasize that as far as we are aware this is the first
application of intervention design and causal learning from
interventional data (in contrast to observational data) applied
to distributed applications such as emerging cloud-native
microservice-based applications.
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